A novel combined cooling-heating and power (CCHP) system integrated organic Rankine cycle for waste heat recovery of bottom slag in coal-fired plants

被引:58
作者
Liao, Gaoliang [1 ,2 ,3 ]
Liu, Lijun [4 ]
Zhang, Feng [1 ,2 ,3 ]
Jiaqiang, E. [1 ,2 ,3 ]
Chen, Jingwei [1 ,2 ,3 ]
机构
[1] Hunan Univ, State Key Lab Adv Design & Mfg Vehicle Body, Changsha 410082, Hunan, Peoples R China
[2] Hunan Univ, Coll Mech & Vehicle Engn, Changsha 410082, Hunan, Peoples R China
[3] Hunan Univ, Inst New Energy & Energy Saving & Emiss Reduct Te, Changsha 410082, Hunan, Peoples R China
[4] Hunan Univ, Coll Civil Engn, Changsha 410082, Hunan, Peoples R China
关键词
Organic Rankine cycle (ORC); Bottom slag; Analytic Hierarchy Process (AHP); Working fluids; Combined cooling-heating and power (CCHP); INTERNAL-COMBUSTION ENGINE; BUTANOL-ETHANOL ABE; PERFORMANCE ANALYSIS; FUEL CANDIDATE; WORKING FLUID; GAS-TURBINE; OPTIMIZATION; ORC; DESIGN; FLOW;
D O I
10.1016/j.enconman.2019.02.072
中图分类号
O414.1 [热力学];
学科分类号
摘要
The extensive use of organic Rankine cycle (ORC) in waste heat recovery motivates the employment of ORC technique to recover the waste heat in coal-fired plants. A novel combined cooling-heating and power (CCHP) system integrated Organic Rankine Cycle (CCHP-ORC) for recovering the waste heat of bottom slag in coal-fired plant is first proposed in this paper. A MATLAB procedure with REFPROP database is developed for the proposed system based on the mass, energy and exergy balances of each component. With the application of Analytic Hierarchy Process (AHP) method, R1234ze(E) and heptane/R601a are adopted as the optimal working fluids for the Sing Fluid CCHP-ORC and Dual Fluid CCHP-ORC systems, respectively. Parametric studies are conducted to investigate the effect of superheat degree of turbine inlet temperature, chilled water mass flow rate and condenser temperature on the coefficient of performance, thermal efficiency, heat exergy, cooling exergy, total exergy production and exergy production rate. The results show that the superheat degree of turbine inlet temperature benefits the enhancement of the exergy production rate. The enhancement of chilled water mass flow rate leads to an increase in coefficient of performance and refrigerating capacity while the cooling exergy, total exergy production and exergy production rate decrease. Except for exergy production rate in Dual Fluid CCHP-ORC system, the rise of condenser temperature leads to a decrease of performance parameters. As the condenser temperature rises from 25 degrees C to 40 degrees C, the thermal efficiency of Cycle2 declines 19.4% and 18.3% respectively in the Sing Fluid CCHP-ORC system and Dual Fluid CCHP-ORC system.
引用
收藏
页码:380 / 392
页数:13
相关论文
共 50 条
  • [21] Life cycle assessment of coal-fired solar-assisted carbon capture power generation system integrated with organic Rankine cycle
    Dong, Zhijian
    Ye, Xuemin
    Jiang, Jintao
    Li, Chunxi
    JOURNAL OF CLEANER PRODUCTION, 2022, 356
  • [22] Energy and exergy analysis of a new cogeneration system based on an organic Rankine cycle and absorption heat pump in the coal-fired power plant
    Zhang, Hongsheng
    Liu, Yifeng
    Liu, Xingang
    Duan, Chenghong
    ENERGY CONVERSION AND MANAGEMENT, 2020, 223
  • [23] Thermo-economic analyses on a new conceptual system of waste heat recovery integrated with an S-CO2 cycle for coal-fired power plants
    Liu, Ming
    Zhang, Xuwei
    Ma, Yuegeng
    Yan, Junjie
    ENERGY CONVERSION AND MANAGEMENT, 2018, 161 : 243 - 253
  • [24] Size optimization of a biomass-fired cogeneration plant CHP/CCHP (Combined heat and power/Combined heat, cooling and power) based on Organic Rankine Cycle for a district network in Spain
    Uris, Maria
    Ignacio Linares, Jose
    Arenas, Eva
    ENERGY, 2015, 88 : 935 - 945
  • [25] Probabilistic Performance Evaluation of Small Scale Organic Rankine Cycle Power Plants for Waste Heat Recovery
    Di Lorenzo, Giuseppina
    Giovannelli, Ambra
    30TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, PTS A-C, 2020, 48 : 1531 - 1536
  • [26] A novel design of low-grade waste heat utilization for coal-fired power plants with sulfuric acid recovery
    Ouyang, Tiancheng
    Xu, Jisong
    Su, Zixiang
    Zhao, Zhongkai
    Huang, Guicong
    Mo, Chunlan
    ENERGY CONVERSION AND MANAGEMENT, 2021, 227
  • [27] Optimization of Biomass-Fuelled Combined Cooling, Heating and Power (CCHP) Systems Integrated with Subcritical or Transcritical Organic Rankine Cycles (ORCs)
    Maraver, Daniel
    Quoilin, Sylvain
    Royo, Javier
    ENTROPY, 2014, 16 (05): : 2433 - 2453
  • [28] Thermodynamic analysis and economic assessment of biomass-fired organic Rankine cycle combined heat and power system integrated with CO2 capture
    Zhu, Yilin
    Li, Weiyi
    Li, Jun
    Li, Haojie
    Wang, Yongzhen
    Li, Shuai
    ENERGY CONVERSION AND MANAGEMENT, 2020, 204
  • [29] Energetic and exergetic efficiencies of coal-fired CHP (combined heat and power) plants used in district heating systems of China
    Liao, Chunhui
    Ertesvag, Ivar S.
    Zhao, Jianing
    ENERGY, 2013, 57 : 671 - 681
  • [30] THERMO-ECONOMIC OPTIMIZATION ON THE WASTE HEAT RECOVERY SYSTEM OF SCO2 COAL-FIRED POWER PLANTS
    Sun, Ruiqiang
    Yang, Kaixuang
    Liu, Ming
    Yan, Junjie
    PROCEEDINGS OF THE ASME 2020 POWER CONFERENCE (POWER2020), 2020,