Spectral properties of non-self-adjoint operators in the semi-classical regime

被引:12
|
作者
Redparth, P [1 ]
机构
[1] Kings Coll London, Dept Math, London WC2R 2LS, England
关键词
Schrodinger operator; non-self-adjoint operator; Sturm-Liouville problem; Airy function; Stokes' lines; characteristic determinant; asymptotic analysis;
D O I
10.1006/jdeq.2000.3992
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a spectral description of the semi-classical Schrodinger operator with a piecewise-linear, complex-valued potential. Moreover, using these results, we give an example to show how an arbitrarily small fixed perturbation of a non-self-adjoint operator can completely change the asymptotic spectrum of the operator in the semi-classical limit. (C) 2001 Academic Press.
引用
收藏
页码:307 / 330
页数:24
相关论文
共 50 条
  • [31] NON-SELF-ADJOINT OPERATORS AND THEIR ESSENTIAL SPECTRA
    EVANS, WD
    LEWIS, RT
    ZETTL, A
    LECTURE NOTES IN MATHEMATICS, 1983, 1032 : 123 - 160
  • [32] ON THE ACCELERANTS OF NON-SELF-ADJOINT DIRAC OPERATORS
    Mykytyuk, Ya. V.
    Puyda, D. V.
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2014, 20 (04): : 349 - 364
  • [33] Regularized traces of non-self-adjoint operators
    V. V. Dubrovskii
    Mathematical Notes, 2000, 67 : 266 - 266
  • [34] On spectral decompositions corresponding to non-self-adjoint Sturm-Liouville operators
    A. S. Makin
    Doklady Mathematics, 2006, 73 : 15 - 18
  • [35] Asymptotic analysis of non-self-adjoint Hill operators
    Veliev, Oktay A.
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2013, 11 (12): : 2234 - 2256
  • [36] Noncommutative geometry for symmetric non-self-adjoint operators
    Connes, Alain
    Levitina, Galina
    McDonald, Edward
    Sukochev, Fedor
    Zanin, Dmitriy
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (03) : 889 - 936
  • [37] Non-Self-Adjoint Resolutions of the Identity and Associated Operators
    Atsushi Inoue
    Camillo Trapani
    Complex Analysis and Operator Theory, 2014, 8 : 1531 - 1546
  • [38] A primer on eigenvalue problems of non-self-adjoint operators
    Rakesh Kumar
    Kirankumar R. Hiremath
    Sergio Manzetti
    Analysis and Mathematical Physics, 2024, 14
  • [39] The method of similar operators in the spectral analysis of non-self-adjoint Dirac operators with non-smooth potentials
    Baskakov, A. G.
    Derbushev, A. V.
    Shcherbakov, A. O.
    IZVESTIYA MATHEMATICS, 2011, 75 (03) : 445 - 469
  • [40] Spectral problems of a class of non-self-adjoint one-dimensional Schrodinger operators
    Veliev, O. A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 422 (02) : 1390 - 1401