Estimating crop biomass using leaf area index derived from Landsat 8 and Sentinel-2 data

被引:80
|
作者
Dong, Taifeng [1 ]
Liu, Jiangui [1 ]
Qian, Budong [1 ]
He, Liming [2 ]
Liu, Jane [2 ]
Wang, Rong [2 ]
Jing, Qi [1 ]
Champagne, Catherine [1 ]
McNairn, Heather [1 ]
Powers, Jarrett [1 ]
Shi, Yichao [1 ]
Chen, Jing M. [2 ]
Shang, Jiali [1 ]
机构
[1] Agr & Agri Food Canada, 960 Carling Ave, Ottawa, ON K1A 0C6, Canada
[2] Univ Toronto, Dept Geog & Program Planning, 100 St George St, Toronto, ON M5S 3G3, Canada
关键词
Sentinel-2; Landsat-8; Harmonized Landsat Sentinel-2 (HLS); Leaf area index; Biomass; Data assimilation; LIGHT USE EFFICIENCY; WATER-USE EFFICIENCY; VEGETATION INDEXES; REMOTE ESTIMATION; SPECTRAL REFLECTANCE; PRIMARY PRODUCTIVITY; SURFACE REFLECTANCE; CHLOROPHYLL CONTENT; YIELD ESTIMATION; LAI ESTIMATION;
D O I
10.1016/j.isprsjprs.2020.08.003
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
The availability of Landsat 8 and Sentinel-2 has led to a steady increase in both temporal and spatial resolution of satellite data, offering new opportunities for large-scale crop condition monitoring and crop yield mapping. This study investigated the potential of using Landsat 8 and Sentinel-2 data from the harmonized Landsat 8 and Sentinel-2 (HLS) products for crop biomass estimation for six crops in Manitoba, Canada. Crop biomass was estimated using remotely sensed leaf area index (LAI) to reparametrize a simple crop growth model. The results showed that the LAI of six different crops can be estimated using a generic relationship between LAI and red-edge based vegetation indices (VIs, e.g., modified simple ratio red-edge (MSRRE) and red-edge normalized difference VI (NDVIRE)) for the Multispectral Instrument (MSI) of Sentinel-2. For the Operational Land Imager of Landsat 8 without the red-edge band, LAI can be best estimated using a VI derived from Near-infrared (NIR) and short-wave infrared (SWIR) bands (Normalized Difference Water Index, NDWI1). Above-ground dry biomass of these six crops was more accurately estimated from the assimilation of LAI derived from both satellites (R-2 (the coefficient of determination) = 0.81, RMSE (the root-mean-square-error) = 135.4 g/m(2), nRMSE (the normalized RMSE) 37.9%, RPD (the ratio of percent deviation) = 2.26) than that of LAI derived from MSI-data (R-2 = 0.80, RMSE = 136.7 g/m(2) , nRMSE = 38.3%, RPD = 2.23) or that from LAI derived from OLI-data (R-2 = 0.68, RMSE = 191.0 g/m(2), nRMSE = 53.5%, RPD = 1.16). Further analysis showed that these three assimilation cases (MSI and OLI; MSI alone; OLI alone) with a different number of LAI observations resulted in differences in parameter optimization, particularly the parameters relevant to crop phenology and biomass partitioning. Both crop growth stage (e.g., the emergence date for crop growth) and leaf dry biomass estimated from the assimilation of LAI derived from MSI and OLI, or MSI alone, produced the most accurate estimates. These results are likely attributed to the improved temporal coverage associated with Sentinel-2 and the availability of a red-edge band on this sensor.
引用
收藏
页码:236 / 250
页数:15
相关论文
共 50 条
  • [41] Mapping Plant Nitrogen Concentration and Aboveground Biomass of Potato Crops from Sentinel-2 Data Using Ensemble Learning Models
    Yin, Hang
    Li, Fei
    Yang, Haibo
    Di, Yunfei
    Hu, Yuncai
    Yu, Kang
    REMOTE SENSING, 2024, 16 (02)
  • [42] Fusion of Landsat 8 OLI and Sentinel-2 MSI Data
    Wang, Qunming
    Blackburn, George Alan
    Onojeghuo, Alex O.
    Dash, Jadunandan
    Zhou, Lingquan
    Zhang, Yihang
    Atkinson, Peter M.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (07): : 3885 - 3899
  • [43] Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany
    Blickensdoerfer, Lukas
    Schwieder, Marcel
    Pflugmacher, Dirk
    Nendel, Claas
    Erasmi, Stefan
    Hostert, Patrick
    REMOTE SENSING OF ENVIRONMENT, 2022, 269
  • [44] Using Sentinel-2 Data for Retrieving LAI and Leaf and Canopy Chlorophyll Content of a Potato Crop
    Clevers, Jan G. P. W.
    Kooistra, Lammert
    van den Brande, Marnix M. M.
    REMOTE SENSING, 2017, 9 (05)
  • [45] A Hybrid Leaf Area Index Estimation Method of Dioscorea Polystachya Turczaninow Using Sentinel-2 Vegetation Indices
    Chen, Zhulin
    Shi, Tingting
    Zhang, Xiaobo
    Jia, Kun
    Jiang, Haiying
    Yuan, Bo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [46] Estimating the above ground biomass of winter wheat using the Sentinel-2 data
    Zheng Y.
    Wu B.
    Zhang M.
    Yaogan Xuebao/J. Remote Sens., 2 (318-328): : 318 - 328
  • [47] Nitrogen status of durum wheat derived from Sentinel-2 satellite data in central Italy
    Nino, Pasquale
    D'Urso, Guido
    Vanino, Silvia
    Di Bene, Claudia
    Farina, Roberta
    Bolognesi, Salvatore Falanga
    De Michele, Carlo
    Napoli, Rosario
    REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2024, 36
  • [48] COMPARING ATMOSPHERIC CORRECTION PERFORMANCE FOR SENTINEL-2 AND LANDSAT-8 DATA
    Pflug, Bringfried
    Richter, Rudolf
    de los Reyes, Raquel
    Reinartz, Peter
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 6433 - 6436
  • [49] Estimating rainfed groundnut's leaf area index using Sentinel-2 based on Machine Learning Regression Algorithms and Empirical Models
    Ekwe, Michael Chibuike
    Adeluyi, Oluseun
    Verrelst, Jochem
    Kross, Angela
    Odiji, Caleb Akoji
    PRECISION AGRICULTURE, 2024, 25 (03) : 1404 - 1428
  • [50] Development and Assessment of Leaf Area Index Algorithms for the Sentinel-2 Multispectral Imager
    Fernandes, Richard
    Weiss, Marie
    Camacho, Fernando
    Berthelot, Beatrice
    Baret, Fred
    Duca, Riccardo
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 3922 - 3925