Estimating crop biomass using leaf area index derived from Landsat 8 and Sentinel-2 data

被引:80
|
作者
Dong, Taifeng [1 ]
Liu, Jiangui [1 ]
Qian, Budong [1 ]
He, Liming [2 ]
Liu, Jane [2 ]
Wang, Rong [2 ]
Jing, Qi [1 ]
Champagne, Catherine [1 ]
McNairn, Heather [1 ]
Powers, Jarrett [1 ]
Shi, Yichao [1 ]
Chen, Jing M. [2 ]
Shang, Jiali [1 ]
机构
[1] Agr & Agri Food Canada, 960 Carling Ave, Ottawa, ON K1A 0C6, Canada
[2] Univ Toronto, Dept Geog & Program Planning, 100 St George St, Toronto, ON M5S 3G3, Canada
关键词
Sentinel-2; Landsat-8; Harmonized Landsat Sentinel-2 (HLS); Leaf area index; Biomass; Data assimilation; LIGHT USE EFFICIENCY; WATER-USE EFFICIENCY; VEGETATION INDEXES; REMOTE ESTIMATION; SPECTRAL REFLECTANCE; PRIMARY PRODUCTIVITY; SURFACE REFLECTANCE; CHLOROPHYLL CONTENT; YIELD ESTIMATION; LAI ESTIMATION;
D O I
10.1016/j.isprsjprs.2020.08.003
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
The availability of Landsat 8 and Sentinel-2 has led to a steady increase in both temporal and spatial resolution of satellite data, offering new opportunities for large-scale crop condition monitoring and crop yield mapping. This study investigated the potential of using Landsat 8 and Sentinel-2 data from the harmonized Landsat 8 and Sentinel-2 (HLS) products for crop biomass estimation for six crops in Manitoba, Canada. Crop biomass was estimated using remotely sensed leaf area index (LAI) to reparametrize a simple crop growth model. The results showed that the LAI of six different crops can be estimated using a generic relationship between LAI and red-edge based vegetation indices (VIs, e.g., modified simple ratio red-edge (MSRRE) and red-edge normalized difference VI (NDVIRE)) for the Multispectral Instrument (MSI) of Sentinel-2. For the Operational Land Imager of Landsat 8 without the red-edge band, LAI can be best estimated using a VI derived from Near-infrared (NIR) and short-wave infrared (SWIR) bands (Normalized Difference Water Index, NDWI1). Above-ground dry biomass of these six crops was more accurately estimated from the assimilation of LAI derived from both satellites (R-2 (the coefficient of determination) = 0.81, RMSE (the root-mean-square-error) = 135.4 g/m(2), nRMSE (the normalized RMSE) 37.9%, RPD (the ratio of percent deviation) = 2.26) than that of LAI derived from MSI-data (R-2 = 0.80, RMSE = 136.7 g/m(2) , nRMSE = 38.3%, RPD = 2.23) or that from LAI derived from OLI-data (R-2 = 0.68, RMSE = 191.0 g/m(2), nRMSE = 53.5%, RPD = 1.16). Further analysis showed that these three assimilation cases (MSI and OLI; MSI alone; OLI alone) with a different number of LAI observations resulted in differences in parameter optimization, particularly the parameters relevant to crop phenology and biomass partitioning. Both crop growth stage (e.g., the emergence date for crop growth) and leaf dry biomass estimated from the assimilation of LAI derived from MSI and OLI, or MSI alone, produced the most accurate estimates. These results are likely attributed to the improved temporal coverage associated with Sentinel-2 and the availability of a red-edge band on this sensor.
引用
收藏
页码:236 / 250
页数:15
相关论文
共 50 条
  • [11] Estimation of Leaf Area Index for Wheat Crop Using Sentinel-2 Satellite Data
    Yadav, Manoj
    Theerdh, Manikyala Sriram
    Giri, Ghanshyam
    Upreti, Hitesh
    Das Singhal, Gopal
    Narakala, Likith Muni
    WORLD ENVIRONMENTAL AND WATER RESOURCES CONGRESS 2024: CLIMATE CHANGE IMPACTS ON THE WORLD WE LIVE IN, 2024, : 948 - 959
  • [12] Comparative analysis of index and chemometric techniques-based assessment of leaf area index (LAI) in wheat through field spectroradiometer, Landsat-8, Sentinel-2 and Hyperion bands
    Das, Bappa
    Sahoo, Rabi N.
    Pargal, Sourabh
    Krishna, Gopal
    Verma, Rakesh
    Chinnusamy, Viswanathan
    Sehgal, Vinay K.
    Gupta, Vinod K.
    GEOCARTO INTERNATIONAL, 2020, 35 (13) : 1415 - 1432
  • [13] Combining Spectral and Texture Features for Estimating Leaf Area Index and Biomass of Maize Using Sentinel-1/2, and Landsat-8 Data
    Luo, Peilei
    Liao, Jingjuan
    Shen, Guozhuang
    IEEE ACCESS, 2020, 8 (08): : 53614 - 53626
  • [14] Optimal Exploitation of the Sentinel-2 Spectral Capabilities for Crop Leaf Area Index Mapping
    Richter, Katja
    Hank, Tobias B.
    Vuolo, Francesco
    Mauser, Wolfram
    D'Urso, Guido
    REMOTE SENSING, 2012, 4 (03) : 561 - 582
  • [15] Comparative analysis of GF-1, HJ-1, and Landsat-8 data for estimating the leaf area index of winter wheat
    Li He
    Chen Zhong-xin
    Jiang Zhi-wei
    Wu Wen-bin
    Ren Jian-qiang
    Liu Bin
    Hasi, Tuya
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2017, 16 (02) : 266 - 285
  • [16] Estimating crop primary productivity with Sentinel-2 and Landsat 8 using machine learning methods trained with radiative transfer simulations
    Wolanin, Aleksandra
    Camps-Valls, Gustau
    Gomez-Chova, Luis
    Mateo-Garcia, Gonzalo
    van der Tol, Christiaan
    Zhang, Yongguang
    Guanter, Luis
    REMOTE SENSING OF ENVIRONMENT, 2019, 225 : 441 - 457
  • [17] Crop Biomass Mapping Based on Ecosystem Modeling at Regional Scale Using High Resolution Sentinel-2 Data
    He, Liming
    Wang, Rong
    Mostovoy, Georgy
    Liu, Jane
    Chen, Jing M.
    Shang, Jiali
    Liu, Jiangui
    McNairn, Heather
    Powers, Jarrett
    REMOTE SENSING, 2021, 13 (04) : 1 - 24
  • [18] Estimating rice leaf area index at multiple growth stages with Sentinel-2 data: An evaluation of different retrieval algorithms
    Wu, Tongzhou
    Zhang, Zhewei
    Wang, Qi
    Jin, Wenjie
    Meng, Ke
    Wang, Cong
    Yin, Gaofei
    Xu, Baodong
    Shi, Zhihua
    EUROPEAN JOURNAL OF AGRONOMY, 2024, 161
  • [19] Detection of irrigation dates and amounts on maize plots from the integration of Sentinel-2 derived Leaf Area Index values in the Optirrig crop model
    Hamze, Mohamad
    Cheviron, Bruno
    Baghdadi, Nicolas
    Lo, Madiop
    Courault, Dominique
    Zribi, Mehrez
    AGRICULTURAL WATER MANAGEMENT, 2023, 283
  • [20] Retrieval of Leaf Area Index Using Sentinel-2 Imagery in a Mixed Mediterranean Forest Area
    Chrysafis, Irene
    Korakis, Georgios
    Kyriazopoulos, Apostolos P.
    Mallinis, Giorgos
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2020, 9 (11)