Estimating crop biomass using leaf area index derived from Landsat 8 and Sentinel-2 data

被引:80
|
作者
Dong, Taifeng [1 ]
Liu, Jiangui [1 ]
Qian, Budong [1 ]
He, Liming [2 ]
Liu, Jane [2 ]
Wang, Rong [2 ]
Jing, Qi [1 ]
Champagne, Catherine [1 ]
McNairn, Heather [1 ]
Powers, Jarrett [1 ]
Shi, Yichao [1 ]
Chen, Jing M. [2 ]
Shang, Jiali [1 ]
机构
[1] Agr & Agri Food Canada, 960 Carling Ave, Ottawa, ON K1A 0C6, Canada
[2] Univ Toronto, Dept Geog & Program Planning, 100 St George St, Toronto, ON M5S 3G3, Canada
关键词
Sentinel-2; Landsat-8; Harmonized Landsat Sentinel-2 (HLS); Leaf area index; Biomass; Data assimilation; LIGHT USE EFFICIENCY; WATER-USE EFFICIENCY; VEGETATION INDEXES; REMOTE ESTIMATION; SPECTRAL REFLECTANCE; PRIMARY PRODUCTIVITY; SURFACE REFLECTANCE; CHLOROPHYLL CONTENT; YIELD ESTIMATION; LAI ESTIMATION;
D O I
10.1016/j.isprsjprs.2020.08.003
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
The availability of Landsat 8 and Sentinel-2 has led to a steady increase in both temporal and spatial resolution of satellite data, offering new opportunities for large-scale crop condition monitoring and crop yield mapping. This study investigated the potential of using Landsat 8 and Sentinel-2 data from the harmonized Landsat 8 and Sentinel-2 (HLS) products for crop biomass estimation for six crops in Manitoba, Canada. Crop biomass was estimated using remotely sensed leaf area index (LAI) to reparametrize a simple crop growth model. The results showed that the LAI of six different crops can be estimated using a generic relationship between LAI and red-edge based vegetation indices (VIs, e.g., modified simple ratio red-edge (MSRRE) and red-edge normalized difference VI (NDVIRE)) for the Multispectral Instrument (MSI) of Sentinel-2. For the Operational Land Imager of Landsat 8 without the red-edge band, LAI can be best estimated using a VI derived from Near-infrared (NIR) and short-wave infrared (SWIR) bands (Normalized Difference Water Index, NDWI1). Above-ground dry biomass of these six crops was more accurately estimated from the assimilation of LAI derived from both satellites (R-2 (the coefficient of determination) = 0.81, RMSE (the root-mean-square-error) = 135.4 g/m(2), nRMSE (the normalized RMSE) 37.9%, RPD (the ratio of percent deviation) = 2.26) than that of LAI derived from MSI-data (R-2 = 0.80, RMSE = 136.7 g/m(2) , nRMSE = 38.3%, RPD = 2.23) or that from LAI derived from OLI-data (R-2 = 0.68, RMSE = 191.0 g/m(2), nRMSE = 53.5%, RPD = 1.16). Further analysis showed that these three assimilation cases (MSI and OLI; MSI alone; OLI alone) with a different number of LAI observations resulted in differences in parameter optimization, particularly the parameters relevant to crop phenology and biomass partitioning. Both crop growth stage (e.g., the emergence date for crop growth) and leaf dry biomass estimated from the assimilation of LAI derived from MSI and OLI, or MSI alone, produced the most accurate estimates. These results are likely attributed to the improved temporal coverage associated with Sentinel-2 and the availability of a red-edge band on this sensor.
引用
收藏
页码:236 / 250
页数:15
相关论文
共 50 条
  • [11] Estimating winter wheat biomass by assimilating leaf area index derived from fusion of Landsat-8 and MODIS data
    Dong, Taifeng
    Liu, Jiangui
    Qian, Budong
    Zhao, Ting
    Jing, Qi
    Geng, Xiaoyuan
    Wang, Jinfei
    Huffman, Ted
    Shang, Jiali
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2016, 49 : 63 - 74
  • [12] Comparison of Sentinel-2 and Landsat 8 in the estimation of boreal forest canopy cover and leaf area index
    Korhonen, Lauri
    Hadi
    Packalen, Petteri
    Rautiainen, Miina
    REMOTE SENSING OF ENVIRONMENT, 2017, 195 : 259 - 274
  • [13] Temporal dynamics of leaf area index and land surface temperature correlation using Sentinel-2 and Landsat OLI data
    Ahmed, Ali Yasin
    Ali, Abebe Mohammed
    Ahmed, Nurhussen
    ENVIRONMENTAL SYSTEMS RESEARCH, 2024, 13 (01)
  • [14] Estimating Leaf Area Index and biomass of sugarcane based on Gaussian process regression using Landsat 8 and Sentinel 1A observations
    Abebe, Gebeyehu
    Tadesse, Tsegaye
    Gessesse, Berhan
    INTERNATIONAL JOURNAL OF IMAGE AND DATA FUSION, 2023, 14 (01) : 58 - 88
  • [15] High resolution crop intensity mapping using harmonized Landsat-8 and Sentinel-2 data
    Hao Peng-yu
    Tang Hua-jun
    Chen Zhong-xin
    Yu Le
    Wu Ming-quan
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2019, 18 (12) : 2883 - 2897
  • [16] A Comparison of Retrieval Approaches for Estimating the Seasonal Dynamics of Rice Leaf Area Index from simulated Sentinel-2 data
    Adeluyi, O. A.
    Harris, A.
    Clay, G.
    Foster, T.
    REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XXI, 2019, 11149
  • [17] High resolution crop intensity mapping using harmonized Landsat-8 and Sentinel-2 data
    HAO Peng-yu
    TANG Hua-jun
    CHEN Zhong-xin
    YU Le
    WU Ming-quan
    Journal of Integrative Agriculture, 2019, 18 (12) : 2883 - 2897
  • [18] Optimal Exploitation of the Sentinel-2 Spectral Capabilities for Crop Leaf Area Index Mapping
    Richter, Katja
    Hank, Tobias B.
    Vuolo, Francesco
    Mauser, Wolfram
    D'Urso, Guido
    REMOTE SENSING, 2012, 4 (03) : 561 - 582
  • [19] Estimating the leaf area index in Indian tropical forests using Landsat-8 OLI data
    Middinti, Suresh
    Thumaty, Kiran Chand
    Gopalakrishnan, Rajashekar
    Jha, Chandra Shekhar
    Thatiparthi, Byragi Reddy
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2017, 38 (23) : 6769 - 6789
  • [20] Assessing Crop Water Stress Index of Citrus Using In-Situ Measurements, Landsat, and Sentinel-2 Data
    Jamshidi, Sajad
    Zand-Parsa, Shahrokh
    Niyogi, Dev
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2021, 42 (05) : 1893 - 1916