Adaptive stellar spectral subclass classification based on Bayesian SVMs

被引:6
作者
Du, Changde [1 ,2 ]
Luo, Ali [1 ]
Yang, Haifeng [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Natl Astron Observ, Key Lab Opt Astron, Beijing 100012, Peoples R China
[2] Univ Chinese Acad Sci, Sch Phys, Beijing 100049, Peoples R China
[3] Taiyuan Univ Sci & Technol, Sch Comp Sci & Technol, Taiyuan 030024, Peoples R China
基金
中国国家自然科学基金;
关键词
Stellar spectral classification; Bayesian support vector machines; MCMC; Data-driven; PRINCIPAL COMPONENT ANALYSIS; EMISSION-LINE GALAXIES; MACHINE; STARS;
D O I
10.1016/j.newast.2016.08.015
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Stellar spectral classification is one of the most fundamental tasks in survey astronomy. Many automated classification methods have been applied to spectral data. However, their main limitation is that the model parameters must be tuned repeatedly to deal with different data sets. In this paper, we utilize the Bayesian support vector machines (BSVM) to classify the spectral subclass data. Based on Gibbs sampling, BSVM can infer all model parameters adaptively according to different data sets, which allows us to circumvent the time-consuming cross validation for penalty parameter. We explored different normalization methods for stellar spectral data, and the best one has been suggested in this study. Finally, experimental results on several stellar spectral subclass classification problems show that the BSVM model not only possesses good adaptability but also provides better prediction performance than traditional methods. (C) 2016 Published by Elsevier B.V.
引用
收藏
页码:51 / 58
页数:8
相关论文
共 27 条
  • [1] THE TENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT
    Ahn, Christopher P.
    Alexandroff, Rachael
    Allende Prieto, Carlos
    Anders, Friedrich
    Anderson, Scott F.
    Anderton, Timothy
    Andrews, Brett H.
    Aubourg, Eric
    Bailey, Stephen
    Bastien, Fabienne A.
    Bautista, Julian E.
    Beers, Timothy C.
    Beifiori, Alessandra
    Bender, Chad F.
    Berlind, Andreas A.
    Beutler, Florian
    Bhardwaj, Vaishali
    Bird, Jonathan C.
    Bizyaev, Dmitry
    Blake, Cullen H.
    Blanton, Michael R.
    Blomqvist, Michael
    Bochanski, John J.
    Bolton, Adam S.
    Borde, Arnaud
    Bovy, Jo
    Bradley, Alaina Shelden
    Brandt, W. N.
    Brauer, Dorothee
    Brinkmann, J.
    Brownstein, Joel R.
    Busca, Nicolas G.
    Carithers, William
    Carlberg, Joleen K.
    Carnero, Aurelio R.
    Carr, Michael A.
    Chiappini, Cristina
    Chojnowski, S. Drew
    Chuang, Chia-Hsun
    Comparat, Johan
    Crepp, Justin R.
    Cristiani, Stefano
    Croft, Rupert A. C.
    Cuesta, Antonio J.
    Cunha, Katia
    da Costa, Luiz N.
    Dawson, Kyle S.
    De Lee, Nathan
    Dean, Janice D. R.
    Delubac, Timothee
    [J]. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2014, 211 (02)
  • [2] An introduction to MCMC for machine learning
    Andrieu, C
    de Freitas, N
    Doucet, A
    Jordan, MI
    [J]. MACHINE LEARNING, 2003, 50 (1-2) : 5 - 43
  • [3] Restricted Boltzmann machine: a non-linear substitute for PCA in spectral processing
    Bu, Yude
    Zhao, Gang
    Luo, A-li
    Pan, Jingchang
    Chen, Yuqin
    [J]. ASTRONOMY & ASTROPHYSICS, 2015, 576
  • [4] Stellar atmospheric parameter estimation using Gaussian process regression
    Bu, Yude
    Pan, Jingchang
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 447 (01) : 256 - 265
  • [5] Stellar spectral subclasses classification based on Isomap and SVM
    Bu, Yude
    Chen, Fuqiang
    Pan, Jingchang
    [J]. NEW ASTRONOMY, 2014, 28 : 35 - 43
  • [6] CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
  • [7] Synapses of active galactic nuclei: Comparing X-ray and optical classifications using artificial neural networks
    Gonzalez-Martin, O.
    Diaz-Gonzalez, D.
    Acosta-Pulido, J. A.
    Masegosa, J.
    Papadakis, I. E.
    Rodriguez-Espinosa, J. M.
    Marquez, I.
    Hernandez-Garcia, L.
    [J]. ASTRONOMY & ASTROPHYSICS, 2014, 567
  • [8] Keenan PC., 1976, An atlas of spectra of the cooler stars: Types G,K,M,S
  • [9] Spectral classification of stars based on LAMOST spectra
    Liu, Chao
    Cui, Wen-Yuan
    Zhang, Bo
    Wan, Jun-Chen
    Deng, Li-Cai
    Hou, Yong-Hui
    Wang, Yue-Fei
    Yang, Ming
    Zhang, Yong
    [J]. RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2015, 15 (08) : 1137 - 1153
  • [10] Stellar Spectral Subclasses Classification Based on Fisher Criterion and Manifold Learning
    Liu Zhong-Bao
    Song Li-Peng
    [J]. PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2015, 127 (954) : 789 - 794