Global-local nonlinear model reduction for flows in heterogeneous porous media

被引:43
作者
Alotaibi, Manal [1 ,2 ,3 ]
Calo, Victor M. [3 ,4 ]
Efendiev, Yalchin [1 ,2 ,3 ]
Galvis, Juan [5 ]
Ghommem, Mehdi [3 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[2] Texas A&M Univ, ISC, College Stn, TX 77843 USA
[3] KAUST, Ctr Numer Porous Media NumPor, Thuwal 239556900, Saudi Arabia
[4] KAUST, Appl Math & Computat Sci & Earth Sci & Engn, Thuwal 239556900, Saudi Arabia
[5] Univ Nacl Colombia, Dept Matemat, Bogota, Colombia
关键词
Generalized multiscale finite element method; Nonlinear PDEs; Heterogeneous porous media; Discrete empirical interpolation; Proper orthogonal decomposition; FINITE-ELEMENT-METHOD; DOMAIN DECOMPOSITION PRECONDITIONERS; HIGH-CONTRAST MEDIA; EMPIRICAL INTERPOLATION; ELLIPTIC PROBLEMS; MULTISCALE FLOWS; SIMULATION;
D O I
10.1016/j.cma.2014.10.034
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we combine discrete empirical interpolation techniques, global mode decomposition methods, and local multiscale methods, such as the Generalized Multiscale Finite Element Method (GMsFEM), to reduce the computational complexity associated with nonlinear flows in highly-heterogeneous porous media. To solve the nonlinear governing equations, we employ the GMsFEM to represent the solution on a coarse grid with multiscale basis functions and apply proper orthogonal decomposition on a coarse grid. Computing the GMsFEM solution involves calculating the residual and the Jacobian on a fine grid. As such, we use local and global empirical interpolation concepts to circumvent performing these computations on the fine grid. The resulting reduced-order approach significantly reduces the flow problem size while accurately capturing the behavior of fully-resolved solutions. We consider several numerical examples of nonlinear multiscale partial differential equations that are numerically integrated using fully-implicit time marching schemes to demonstrate the capability of the proposed model reduction approach to speed up simulations of nonlinear flows in high-contrast porous media. (C) 2015 Published by Elsevier B.V.
引用
收藏
页码:122 / 137
页数:16
相关论文
共 31 条
[1]   MIXED MULTISCALE FINITE ELEMENT METHODS FOR STOCHASTIC POROUS MEDIA FLOWS [J].
Aarnes, J. E. ;
Efendiev, Y. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (05) :2319-2339
[2]   On the use of a mixed multiscale finite element method for greater flexibility and increased speed or improved accuracy in reservoir simulation [J].
Aarnes, JE .
MULTISCALE MODELING & SIMULATION, 2004, 2 (03) :421-439
[3]   A New Closure Strategy for Proper Orthogonal Decomposition Reduced-Order Models [J].
Akhtar, Imran ;
Wang, Zhu ;
Borggaard, Jeff ;
Iliescu, Traian .
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2012, 7 (03) :1-6
[4]   On the stability and extension of reduced-order Galerkin models in incompressible flows [J].
Akhtar, Imran ;
Nayfeh, Ali H. ;
Ribbens, Calvin J. .
THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2009, 23 (03) :213-237
[5]   Analysis of a two-scale, locally conservative subgrid upscaling for elliptic problems [J].
Arbogast, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (02) :576-598
[6]   A multiscale mortar mixed finite element method [J].
Arbogast, Todd ;
Pencheva, Gergina ;
Wheeler, Mary F. ;
Yotov, Ivan .
MULTISCALE MODELING & SIMULATION, 2007, 6 (01) :319-346
[7]   Subgrid upscaling and mixed multiscale finite elements [J].
Arbogast, Todd ;
Boyd, Kirsten J. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (03) :1150-1171
[8]   VISCOUS SUBLAYER AND ADJACENT WALL REGION IN TURBULENT PIPE FLOW [J].
BAKEWELL, HP ;
LUMLEY, JL .
PHYSICS OF FLUIDS, 1967, 10 (9P1) :1880-&
[9]  
Berkooz G., 1993, ANNU REV FLUID MECH, V53, P321, DOI DOI 10.1146/annurev.fl.25.010193.002543
[10]   Multiscale empirical interpolation for solving nonlinear PDEs [J].
Calo, Victor M. ;
Efendiev, Yalchin ;
Galvisd, Juan ;
Ghommem, Mehdi .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 278 :204-220