Physics of Dynamic Contact Line: Hydrodynamics Theory versus Molecular Kinetic Theory

被引:16
作者
Karim, Alireza Mohammad [1 ]
Suszynski, Wieslaw J. [2 ]
机构
[1] Univ Cambridge, Nanosci Ctr, Dept Engn, 11 JJ Thomson Ave, Cambridge CB3 0FF, England
[2] Univ Minnesota, Dept Chem Engn & Mat Sci, 421 Washington Ave SE, Minneapolis, MN 55455 USA
关键词
hydrodynamics; molecular kinetics; contact angle; contact line velocity; flexible substrate; superhydrophobic substrate; WETTING FAILURE; ANGLE HYSTERESIS; SUPERHYDROPHOBIC SURFACES; COLLOIDAL SUSPENSIONS; NUMERICAL-SIMULATION; STEADY MOVEMENT; LIQUID BRIDGES; SOLID-SURFACE; THIN-FILM; MODEL;
D O I
10.3390/fluids7100318
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The dynamic contact line plays a key role in various fields of interfacial physics, including bioprinting, nano-scale printing, three-dimensional printing, biomaterials, tissue engineering, smart materials, flexible printed electronics, biomedicine, and healthcare. However, there is still a lack of thorough physical understanding of its real behavior in numerous complex problems in nature and technology. The dynamic contact line exhibits a complex conformation in real-life fluid dynamics problems. Therefore, this review presents two main long-standing models that describe the physics of the dynamic contact line: hydrodynamics theory and molecular kinetics theory. Next, the role of the dynamic contact line in current advanced technologies is discussed. Finally, this review discusses future research directions to enhance the power of current physical models of the dynamic contact line.
引用
收藏
页数:19
相关论文
共 198 条
[1]   Dynamic self-assembly of charged colloidal strings and walls in simple fluid flows [J].
Abe, Yu ;
Zhang, Bo ;
Gordillo, Leonardo ;
Karim, Alireza Mohammad ;
Francis, Lorraine F. ;
Cheng, Xiang .
SOFT MATTER, 2017, 13 (08) :1681-1692
[2]   Challenges of numerical simulation of dynamic wetting phenomena: a review [J].
Afkhami, Shahriar .
CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2022, 57
[3]   Water droplet friction and rolling dynamics on superhydrophobic surfaces [J].
Backholm, Matilda ;
Molpeceres, Daniel ;
Vuckovac, Maja ;
Nurmi, Heikki ;
Hokkanen, Matti J. ;
Jokinen, Ville ;
Timonen, Jaakko V. I. ;
Ras, Robin H. A. .
COMMUNICATIONS MATERIALS, 2020, 1 (01)
[4]   SURFACE ROUGHNESS AS RELATED TO HYSTERESIS OF CONTACT ANGLES .1. THE SYSTEM PARAFFIN WATER AIR [J].
BARTELL, FE ;
SHEPARD, JW .
JOURNAL OF PHYSICAL CHEMISTRY, 1953, 57 (02) :211-215
[5]   Controlling droplet deposition with polymer additives [J].
Bergeron, V ;
Bonn, D ;
Martin, JY ;
Vovelle, L .
NATURE, 2000, 405 (6788) :772-775
[6]   Capillarity driven spreading of circular drops of shear-thinning fluid [J].
Betelú, SI ;
Fontelos, MA .
MATHEMATICAL AND COMPUTER MODELLING, 2004, 40 (7-8) :729-734
[7]   Capillarity driven spreading of power-law fluids [J].
Betelu, SI ;
Fontelos, MA .
APPLIED MATHEMATICS LETTERS, 2003, 16 (08) :1315-1320
[8]   Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction [J].
Bhushan, Bharat ;
Jung, Yong Chae .
PROGRESS IN MATERIALS SCIENCE, 2011, 56 (01) :1-108
[9]   First steps in the spreading of a liquid droplet -: art. no. 016301 [J].
Biance, AL ;
Clanet, C ;
Quéré, D .
PHYSICAL REVIEW E, 2004, 69 (01) :4
[10]   Kinetically driven self assembly of highly ordered nanoparticle monolayers [J].
Bigioni, TP ;
Lin, XM ;
Nguyen, TT ;
Corwin, EI ;
Witten, TA ;
Jaeger, HM .
NATURE MATERIALS, 2006, 5 (04) :265-270