New rational extensions of solvable potentials with finite bound state spectrum

被引:25
作者
Grandati, Yves [1 ]
机构
[1] Univ Lorraine, IF CNRS 2843, ICPMB, Equipe BioPhyStat,LCP A2MC, F-57078 Metz 3, France
关键词
ORTHOGONAL POLYNOMIALS; QUANTUM-MECHANICS; LAGUERRE; SUPERSYMMETRY; EQUATION;
D O I
10.1016/j.physleta.2012.09.037
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using the disconjugacy properties of the Schrodinger equation, we develop a new type of generalized SUSY QM partnership which allows generating new solvable rational extensions for translationally shape invariant potentials having a finite bound state spectrum. For this we prolong the dispersion relation relating the energy to the quantum number out of the physical domain until a disconjugacy sector. By Darboux-Backlund Transformations built on these prolonged states we obtain new regular isospectral extensions of the initial potential. We give the spectra of these extensions in terms of new orthogonal polynomials and study their shape invariance properties. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:2866 / 2872
页数:7
相关论文
共 39 条
[1]   An update on the PT-symmetric complexified Scarf II potential, spectral singularities and some remarks on the rationally extended supersymmetric partners [J].
Bagchi, B. ;
Quesne, C. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (30)
[2]  
Bagchi B, 2009, PRAMANA-J PHYS, V73, P337, DOI 10.1007/s12043-009-0126-4
[3]   Integrability of the Riccati equation from a group-theoretical viewpoint [J].
Cariñena, JF ;
Ramos, A .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1999, 14 (12) :1935-1951
[4]   Group theoretical approach to the intertwined Hamiltonians [J].
Cariñena, JF ;
Ramos, A ;
Fernández, DJ .
ANNALS OF PHYSICS, 2001, 292 (01) :42-66
[5]  
Cooper F., 2001, Supersymmetry in Quantum Mechanics
[6]  
Coppel W.A., 1971, DISCONJUGACY
[7]  
Derr V.Y., 2008, ARXIV08114636MATHCA
[8]   SUPERSYMMETRY, SHAPE INVARIANCE, AND EXACTLY SOLVABLE POTENTIALS [J].
DUTT, R ;
KHARE, A ;
SUKHATME, UP .
AMERICAN JOURNAL OF PHYSICS, 1988, 56 (02) :163-168
[9]   Conditionally exactly solvable potentials and exceptional orthogonal polynomials [J].
Dutta, D. ;
Roy, P. .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (04)
[10]  
Erdelyi A., 1953, Higher Transcendental Functions