Assessing the reliability of statistical software: Part II

被引:66
作者
McCullough, BD [1 ]
机构
[1] Fed Commun Commiss, Washington, DC 20554 USA
关键词
accuracy; benchmarks; random number generation; software testing; StRD;
D O I
10.2307/2685736
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Part I outlined a methodology for assessing the reliability of three areas: estimation, random number generation, and calculation of statistical distributions. The present article applies this methodology to SAS, SPSS, and S-Plus, with attention to implementation details. Weaknesses are identified in all the random number generators, the S-Plus correlation procedure, and in the one-way ANOVA and nonlinear least squares routines of SAS and SPSS.
引用
收藏
页码:149 / 159
页数:11
相关论文
共 29 条
[11]  
HUNKA S, 1997, ANOVA NB
[12]   On the accuracy of statistical distributions in Microsoft Excel 97 [J].
Knusel, L .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1998, 26 (03) :375-377
[13]   ON THE ACCURACY OF THE STATISTICAL DISTRIBUTIONS IN GAUSS [J].
KNUSEL, L .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1995, 20 (06) :699-702
[14]  
KNUSEL L, 1989, COMPUTERGESTUTZTE BE
[15]  
KNUSEL L, 1997, UNPUB NOTE ACCURACY
[16]  
KNUSEL L, 1997, UNPUB ACCURACY STAT
[17]  
Knuth D. E., ART COMPUTER PROGRAM, V2
[18]  
LECUYER P, IN PRESS LECT NOTES, V138
[20]  
Marsaglia G., 1996, Diehard: A battery of tests of randomness