Thermalization and Thermal Transport in Molecules

被引:39
作者
Pandey, Hari Datt
Leitner, David M. [1 ]
机构
[1] Univ Nevada, Dept Chem, Reno, NV 89557 USA
基金
美国国家科学基金会;
关键词
ENERGY-FLOW; HEAT-CONDUCTION; LOCALIZATION;
D O I
10.1021/acs.jpclett.6b02539
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The nature and rate of thermal transport through molecular junctions depend on the length over which thermalization occurs. For junctions formed by alkane chains, in which thermalization occurs only slowly, measurements reveal that thermal resistance is controlled by bonding with the substrates, whereas fluorination can introduce thermal resistance within the molecules themselves, although the mechanism remains unclear. Here we present results of quantum-mechanical calculations of elastic and inelastic scattering rates, the length over which thermalization occurs, and thermal conductance in alkane and perfluoroalkane junctions. The contribution to thermalization of quantum effects that give rise to many-body localization (MBL) in isolated molecules is examined. While MBL does not occur due to dephasing, thermalization is typically too slow to establish local temperature if the same molecule in isolation exhibits MBL. The results indicate limitations on the applicability of classical molecular simulations in modeling thermal transport in molecular junctions.
引用
收藏
页码:5062 / 5067
页数:6
相关论文
共 33 条
[1]   Nanoscale thermal transport. II. 2003-2012 [J].
Cahill, David G. ;
Braun, Paul V. ;
Chen, Gang ;
Clarke, David R. ;
Fan, Shanhui ;
Goodson, Kenneth E. ;
Keblinski, Pawel ;
King, William P. ;
Mahan, Gerald D. ;
Majumdar, Arun ;
Maris, Humphrey J. ;
Phillpot, Simon R. ;
Pop, Eric ;
Shi, Li .
APPLIED PHYSICS REVIEWS, 2014, 1 (01)
[2]   Nanoscale thermal transport [J].
Cahill, DG ;
Ford, WK ;
Goodson, KE ;
Mahan, GD ;
Majumdar, A ;
Maris, HJ ;
Merlin, R ;
Phillpot, SR .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (02) :793-818
[3]   Electron transfer across a thermal gradient [J].
Craven, Galen T. ;
Nitzan, Abraham .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (34) :9421-9429
[4]  
Datta S., 1997, Electronic Transport in Mesoscopic Systems, DOI DOI 10.1063/1.2807624
[5]   Protein Thermal Conductivity Measured in the Solid State Reveals Anharmonic Interactions of Vibrations in a Fractal Structure [J].
Foley, Brian M. ;
Gorham, Caroline S. ;
Duda, John C. ;
Cheaito, Ramez ;
Szwejkowski, Chester J. ;
Constantin, Costel ;
Kaehr, Bryan ;
Hopkins, Patrick E. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (07) :1077-1082
[6]   Heat conduction in molecular transport junctions [J].
Galperin, Michael ;
Nitzan, Abraham ;
Ratner, Mark A. .
PHYSICAL REVIEW B, 2007, 75 (15)
[7]   Thermal Conductance across Phosphonic Acid Molecules and Interfaces: Ballistic versus Diffusive Vibrational Transport in Molecular Monolayers [J].
Gaskins, John T. ;
Bulusu, Anuradha ;
Giordano, Anthony J. ;
Duda, John C. ;
Graham, Samuel ;
Hopkins, Patrick E. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (36) :20931-20939
[8]   Molecular vibrational energy flow: beyond the Golden Rule [J].
Gruebele, M ;
Bigwood, R .
INTERNATIONAL REVIEWS IN PHYSICAL CHEMISTRY, 1998, 17 (02) :91-145
[9]   Structure of the amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy [J].
Hamm, P ;
Lim, MH ;
Hochstrasser, RM .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (31) :6123-6138
[10]  
Hopkins PE., 2013, ISRN MECH ENG, V2013, DOI [DOI 10.1155/2013/682586, 10.1155/2013/682586]