Non-thermal fixed points and solitons in a one-dimensional Bose gas

被引:37
作者
Schmidt, Maximilian
Erne, Sebastian
Nowak, Boris
Sexty, Denes
Gasenzer, Thomas [1 ]
机构
[1] Heidelberg Univ, Inst Theoret Phys, D-69120 Heidelberg, Germany
关键词
KOLMOGOROV TURBULENCE; DARK SOLITONS; SUPERFLUID; CONDENSATION; DYNAMICS; KINETICS; DECAY;
D O I
10.1088/1367-2630/14/7/075005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Single-particle momentum spectra for a dynamically evolving one-dimensional Bose gas are analysed in the semi-classical wave limit. Representing one of the simplest correlation functions, these provide information on a possible universal scaling behaviour. Motivated by the previously discovered connection between (quasi-) topological field configurations, strong wave turbulence and non-thermal fixed points of quantum field dynamics, soliton formation is studied with respect to the appearance of transient power-law spectra. A random-soliton model is developed for describing the spectra analytically, and the analogies and differences between the emerging power laws and those found in a field theory approach to strong wave turbulence are discussed. The results open a new perspective on solitary wave dynamics from the point of view of critical phenomena far from thermal equilibrium and the possibility of studying this dynamics by experiment without the need for detecting solitons in situ.
引用
收藏
页数:21
相关论文
共 50 条
[41]   Loschmidt echo in one-dimensional interacting Bose gases [J].
Lelas, K. ;
Seva, T. ;
Buljan, H. .
PHYSICAL REVIEW A, 2011, 84 (06)
[42]   Projective phase measurements in one-dimensional Bose gases [J].
van Nieuwkerk, Yuri D. ;
Schmiedmayer, Joerg ;
Essler, Fabian H. L. .
SCIPOST PHYSICS, 2018, 5 (05)
[43]   One-dimensional polariton solitons and soliton waveguiding in microcavities [J].
Skryabin, D. V. ;
Egorov, O. A. ;
Gorbach, A. V. ;
Lederer, F. .
SUPERLATTICES AND MICROSTRUCTURES, 2010, 47 (01) :5-9
[44]   Dimensionally induced one-dimensional to three-dimensional phase transition of the weakly interacting ultracold Bose gas [J].
Irsigler, Bernhard ;
Pelster, Axel .
PHYSICAL REVIEW A, 2017, 95 (04)
[45]   Stability analysis of ground states in a one-dimensional trapped spin-1 Bose gas [J].
Schmied, C-M ;
Gasenzer, T. ;
Oberthaler, M. K. ;
Kevrekidis, P. G. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 83
[46]   Low-Lying Collective Modes of a One-Dimensional Bose Gas with Quantum Fluctuation Effect [J].
Wang, Zhao-Hui ;
Hou, Ji-Xuan .
JOURNAL OF LOW TEMPERATURE PHYSICS, 2020, 199 (5-6) :1324-1331
[47]   A coordinate Bethe ansatz approach to the calculation of equilibrium and nonequilibrium correlations of the one-dimensional Bose gas [J].
Zill, Jan C. ;
Wright, Tod M. ;
Kheruntsyan, Karen V. ;
Gasenzer, Thomas ;
Davis, Matthew J. .
NEW JOURNAL OF PHYSICS, 2016, 18
[48]   Two-dimensional bright and dark-in-bright dipolar Bose-Einstein condensate solitons on a one-dimensional optical lattice [J].
Adhikari, S. K. .
LASER PHYSICS LETTERS, 2016, 13 (08)
[49]   Polaron-Depleton Transition in the Yrast Excitations of a One-Dimensional Bose Gas with a Mobile Impurity [J].
Yang, Mingrui ;
Cufar, Matija ;
Pahl, Elke ;
Brand, Joachim .
CONDENSED MATTER, 2022, 7 (01)
[50]   Phase diagrams of one-dimensional Bose-Fermi mixtures of ultracold atoms [J].
Mathey, L. ;
Wang, D. -W. .
PHYSICAL REVIEW A, 2007, 75 (01)