Non-thermal fixed points and solitons in a one-dimensional Bose gas

被引:37
作者
Schmidt, Maximilian
Erne, Sebastian
Nowak, Boris
Sexty, Denes
Gasenzer, Thomas [1 ]
机构
[1] Heidelberg Univ, Inst Theoret Phys, D-69120 Heidelberg, Germany
关键词
KOLMOGOROV TURBULENCE; DARK SOLITONS; SUPERFLUID; CONDENSATION; DYNAMICS; KINETICS; DECAY;
D O I
10.1088/1367-2630/14/7/075005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Single-particle momentum spectra for a dynamically evolving one-dimensional Bose gas are analysed in the semi-classical wave limit. Representing one of the simplest correlation functions, these provide information on a possible universal scaling behaviour. Motivated by the previously discovered connection between (quasi-) topological field configurations, strong wave turbulence and non-thermal fixed points of quantum field dynamics, soliton formation is studied with respect to the appearance of transient power-law spectra. A random-soliton model is developed for describing the spectra analytically, and the analogies and differences between the emerging power laws and those found in a field theory approach to strong wave turbulence are discussed. The results open a new perspective on solitary wave dynamics from the point of view of critical phenomena far from thermal equilibrium and the possibility of studying this dynamics by experiment without the need for detecting solitons in situ.
引用
收藏
页数:21
相关论文
共 50 条
[31]   Sudden Expansion of a One-Dimensional Bose Gas from Power-Law Traps [J].
Campbell, A. S. ;
Gangardt, D. M. ;
Kheruntsyan, K. V. .
PHYSICAL REVIEW LETTERS, 2015, 114 (12)
[32]   Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas [J].
Trotzky, S. ;
Chen, Y-A. ;
Flesch, A. ;
McCulloch, I. P. ;
Schollwoeck, U. ;
Eisert, J. ;
Bloch, I. .
NATURE PHYSICS, 2012, 8 (04) :325-330
[33]   Effect of optical-lattice heating on the momentum distribution of a one-dimensional Bose gas [J].
Riou, Jean-Felix ;
Zundel, Laura A. ;
Reinhard, Aaron ;
Weiss, David S. .
PHYSICAL REVIEW A, 2014, 90 (03)
[34]   Repulsive-to-attractive interaction quenches of a one-dimensional Bose gas in a harmonic trap [J].
Tschischik, Wladimir ;
Haque, Masudul .
PHYSICAL REVIEW A, 2015, 91 (05)
[35]   Topological Bose-Mott insulators in one-dimensional non-Hermitian superlattices [J].
Xu, Zhihao ;
Chen, Shu .
PHYSICAL REVIEW B, 2020, 102 (03)
[36]   Josephson oscillations in split one-dimensional Bose gases [J].
van Nieuwkerk, Yuri D. ;
Schmiedmayer, Joerg ;
Essler, Fabian H. L. .
SCIPOST PHYSICS, 2021, 10 (04)
[37]   Distillation of a one-dimensional Bose-Einstein condensate [J].
Gorecka, Agnieszka ;
Gajda, Mariusz .
PHYSICAL REVIEW A, 2009, 79 (05)
[38]   Benchmarks of generalized hydrodynamics for one-dimensional Bose gases [J].
Watson, R. S. ;
Simmons, S. A. ;
V. Kheruntsyan, K. .
PHYSICAL REVIEW RESEARCH, 2023, 5 (02)
[39]   Superfluidity in the one-dimensional Bose-Hubbard model [J].
Kiely, Thomas G. ;
Mueller, Erich J. .
PHYSICAL REVIEW B, 2022, 105 (13)
[40]   Nonequilibrium statistical mechanics in one-dimensional bose gases [J].
Baldovin, F. ;
Cappellaro, A. ;
Orlandini, E. ;
Salasnich, L. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2016,