Optimal two-impulse phasing for elliptical orbits

被引:0
作者
Benavides, Julio Cesar [1 ]
Spencer, David B. [1 ]
机构
[1] Penn State Univ, Dept Aerosp Engn, University Pk, PA 16802 USA
来源
SPACEFLIGHT MECHANICS 2008, VOL 130, PTS 1 AND 2 | 2008年 / 130卷
关键词
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This study analyzes optimal mission velocity change magnitudes required to perform a co-orbital phasing maneuver within an elliptical orbit. Analytical velocity change expressions are derived in terms of the chase vehicle's initial classical orbital elements. The results demonstrate that for sufficiently large times of flight, the minimum velocity change converges to a value that is a function of eccentricity and initial chase satellite true anomaly regardless of the initial phase angle. The equations derived in this investigation are used to analyze phasing maneuvers for geosynchronous, low eccentricity, and Molniya orbits.
引用
收藏
页码:1521 / 1539
页数:19
相关论文
共 50 条
[31]   PLANAR OPTIMAL TWO-IMPULSE CLOSED-FORM SOLUTIONS OF TRANSVERSE TRANSFERS [J].
Carter, Thomas ;
Humi, Mayer .
ASTRODYNAMICS 2015, 2016, 156 :2759-2778
[32]   Two-impulse transfer between coplanar elliptic orbits using along-track thrust [J].
Gang Zhang ;
Guangfu Ma ;
Dongbai Li .
Celestial Mechanics and Dynamical Astronomy, 2015, 121 :261-274
[33]   On optimal two-impulse Earth–Moon transfers in a four-body model [J].
Francesco Topputo .
Celestial Mechanics and Dynamical Astronomy, 2013, 117 :279-313
[34]   Optimal two-impulse rendezvous with terminal tangent burn considering the trajectory constraints [J].
Xie, Chengqing ;
Zhang, Gang ;
Zhang, Yingchun ;
Li, Huayi .
ADVANCES IN SPACE RESEARCH, 2014, 54 (04) :734-743
[35]   Planar Optimal Two-Impulse Transfers with Closed-Form Solutions of the Transverse Transfers [J].
Thomas Carter ;
Mayer Humi .
Journal of Optimization Theory and Applications, 2016, 169 :262-279
[36]   A class of optimal two-impulse rendezvous using multiple-revolution Lambert solutions [J].
Prussing, JE .
RICHARD H BATTIN ASTRODYNAMICS SYMPOSIUM, 2000, 106 :17-39
[37]   AN EXPLORATION OF FUEL OPTIMAL TWO-IMPULSE TRANSFERS TO CYCLERS IN THE EARTH-MOON SYSTEM [J].
Sianaki, Saghar Hosseini ;
Villac, Benjamin F. .
ASTRODYNAMICS 2011, PTS I - IV, 2012, 142 :3597-3612
[38]   Optimal two-impulse rendezvous using constrained multiple-revolution Lambert solutions [J].
Zhang, Gang ;
Zhou, Di ;
Mortari, Daniele .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2011, 110 (04) :305-317
[39]   A class of optimal two-impulse rendezvous using multiple-revolution Lambert solutions [J].
Prussing, John E. .
Advances in the Astronautical Sciences, 2000, 106 :17-37
[40]   Optimal two-impulse rendezvous using constrained multiple-revolution Lambert solutions [J].
Gang Zhang ;
Di Zhou ;
Daniele Mortari .
Celestial Mechanics and Dynamical Astronomy, 2011, 110 :305-317