Optimal two-impulse phasing for elliptical orbits

被引:0
作者
Benavides, Julio Cesar [1 ]
Spencer, David B. [1 ]
机构
[1] Penn State Univ, Dept Aerosp Engn, University Pk, PA 16802 USA
来源
SPACEFLIGHT MECHANICS 2008, VOL 130, PTS 1 AND 2 | 2008年 / 130卷
关键词
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This study analyzes optimal mission velocity change magnitudes required to perform a co-orbital phasing maneuver within an elliptical orbit. Analytical velocity change expressions are derived in terms of the chase vehicle's initial classical orbital elements. The results demonstrate that for sufficiently large times of flight, the minimum velocity change converges to a value that is a function of eccentricity and initial chase satellite true anomaly regardless of the initial phase angle. The equations derived in this investigation are used to analyze phasing maneuvers for geosynchronous, low eccentricity, and Molniya orbits.
引用
收藏
页码:1521 / 1539
页数:19
相关论文
共 50 条
[21]   Optimal four-impulse rendezvous between coplanar elliptical orbits [J].
JianXia Wang ;
HeXi Baoyin ;
JunFeng Li ;
FuChun Sun .
Science China Physics, Mechanics and Astronomy, 2011, 54 :792-802
[22]   Optimal four-impulse rendezvous between coplanar elliptical orbits [J].
WANG JianXia BAOYIN HeXi LI JunFeng SUN FuChun School of AerospaceTsinghua UniversityBeijing China Department of Computer Science and TechnologyTsinghua UniversityBeijing China .
ScienceChina(Physics,Mechanics&Astronomy), 2011, (04) :792-802
[23]   Two-impulse transfer orbits connecting equilibrium points of irregular-shaped asteroids [J].
Hongwei Yang ;
Shengping Gong ;
Hexi Baoyin .
Astrophysics and Space Science, 2015, 357
[24]   Two-impulse transfer orbits connecting equilibrium points of irregular-shaped asteroids [J].
Yang, Hongwei ;
Gong, Shengping ;
Baoyin, Hexi .
ASTROPHYSICS AND SPACE SCIENCE, 2015, 357 (01) :1-11
[25]   Solution set calculation of the Sun-perturbed optimal two-impulse trans-lunar orbits using continuation theory [J].
He, Bo-yong ;
Shen, Hong-xin .
ASTRODYNAMICS, 2020, 4 (01) :75-86
[26]   OPTIMAL ONE AND TWO-IMPULSE MANEUVERS FOR RELATIVE SATELLITE INTERCEPTION AND RECONFIGURATION [J].
Jagat, Ashish ;
Sinclair, Andrew J. ;
Sherrill, Ryan E. ;
Lovell, T. Alan .
ASTRODYNAMICS 2013, PTS I-III, 2014, 150 :591-608
[27]   OPTIMAL OPEN LOW-COST TWO-IMPULSE TRANSFERS IN A PLANE [J].
Carter, Thomas E. ;
Humi, Mayer .
ASTRODYNAMICS 2013, PTS I-III, 2014, 150 :749-760
[28]   Solution set calculation of the Sun-perturbed optimal two-impulse trans-lunar orbits using continuation theory [J].
Bo-yong He ;
Hong-xin Shen .
Astrodynamics, 2020, 4 :75-86
[29]   Optimal two-impulse rendezvous using multiple-revolution Lambert solutions [J].
Shen, HJ ;
Tsiotras, P .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2003, 26 (01) :50-61
[30]   Two-impulse transfer between coplanar elliptic orbits using along-track thrust [J].
Zhang, Gang ;
Ma, Guangfu ;
Li, Dongbai .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2015, 121 (03) :261-274