A New Gradient Method for Ill-Posed Problems

被引:12
作者
Neubauer, Andreas [1 ]
机构
[1] Johannes Kepler Univ Linz, Ind Math Inst, A-4040 Linz, Austria
关键词
Discrepancy principle; gradient methods; Landweber iteration; Linear and nonlinear ill-posed problems; minimal error method; steepest descent method; stopping rule; LANDWEBER ITERATION; HILBERT SCALES;
D O I
10.1080/01630563.2017.1414061
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a new gradient method for linear and nonlinear ill-posed problems F(x)=y. Combined with the discrepancy principle as stopping rule it is a regularization method that yields convergence to an exact solution if the operator F satisfies a tangential cone condition. If the exact solution satisfies smoothness conditions, then even convergence rates can be proven. Numerical results show that the new method in most cases needs less iteration steps than Landweber iteration, the steepest descent or minimal error method.
引用
收藏
页码:737 / 762
页数:26
相关论文
共 13 条
[1]  
[Anonymous], 1996, REGULARIZATION INVER
[2]   An analysis of a multi-level projected steepest descent iteration for nonlinear inverse problems in Banach spaces subject to stability constraints [J].
de Hoop, Maarten V. ;
Qiu, Lingyun ;
Scherzer, Otmar .
NUMERISCHE MATHEMATIK, 2015, 129 (01) :127-148
[3]   THE INSTABILITY OF SOME GRADIENT METHODS FOR ILL-POSED PROBLEMS [J].
EICKE, B ;
LOUIS, AK ;
PLATO, R .
NUMERISCHE MATHEMATIK, 1990, 58 (01) :129-134
[4]  
Gilyazov S. F., 2000, REGULARIZATION ILL P, DOI [10.1007/978-94-015-9482-0, DOI 10.1007/978-94-015-9482-0]
[5]   A CONVERGENCE ANALYSIS OF THE LANDWEBER ITERATION FOR NONLINEAR ILL-POSED PROBLEMS [J].
HANKE, M ;
NEUBAUER, A ;
SCHERZER, O .
NUMERISCHE MATHEMATIK, 1995, 72 (01) :21-37
[6]   A NOTE ON THE NONLINEAR LANDWEBER ITERATION [J].
Hanke, Martin .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2014, 35 (11) :1500-1510
[7]  
Kaltenbacher B, 2008, RADON SER COMPUT APP, V6, P1, DOI 10.1515/9783110208276
[8]   On projective Landweber-Kaczmarz methods for solving systems of nonlinear ill-posed equations [J].
Leitao, A. ;
Svaiter, B. F. .
INVERSE PROBLEMS, 2016, 32 (02)
[9]  
Neubauer A, 2000, NUMER MATH, V85, P309, DOI 10.1007/s002119900124
[10]  
Neubauer A., 1995, Z ANAL ANWEND, V14, P369, DOI [10.4171/ZAA/679, DOI 10.4171/ZAA/679]