We consider in this work the problem of minimizing the von Neumann entropy under the constraints that the density of particles, the current, and the kinetic energy of the system is fixed at each point of space. The unique minimizer is a self-adjoint positive trace class operator, and our objective is to characterize its form. We will show that this minimizer is solution to a self-consistent nonlinear eigenvalue problem. One of the main difficulties in the proof is to parametrize the feasible set in order to derive the Euler-Lagrange equation, and we will proceed by constructing an appropriate form of perturbations of the minimizer. The question of deriving quantum statistical equilibria is at the heart of the quantum hydrodynamical models introduced by Degond and Ringhofer (J Statist Phys 112:(3-4), 587-628, 2003). An original feature of the problem is the local nature of constraints, i.e. they depend on position, while more classical models consider the total number of particles, the total current and the total energy in the system to be fixed.
机构:
Shaanxi Normal Univ, Coll Math & Informat Sci, Xian 710062, Peoples R ChinaShaanxi Normal Univ, Coll Math & Informat Sci, Xian 710062, Peoples R China
Zhang, JH
Ji, GX
论文数: 0引用数: 0
h-index: 0
机构:
Shaanxi Normal Univ, Coll Math & Informat Sci, Xian 710062, Peoples R ChinaShaanxi Normal Univ, Coll Math & Informat Sci, Xian 710062, Peoples R China
Ji, GX
Cao, HX
论文数: 0引用数: 0
h-index: 0
机构:
Shaanxi Normal Univ, Coll Math & Informat Sci, Xian 710062, Peoples R ChinaShaanxi Normal Univ, Coll Math & Informat Sci, Xian 710062, Peoples R China
机构:
Natl Univ La Plata, Fac Ciencias Exactas, Dto Matemat, RA-1900 La Plata, ArgentinaNatl Univ La Plata, Fac Ciencias Exactas, Dto Matemat, RA-1900 La Plata, Argentina
机构:
Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USAUniv Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
Craig, Katy
Topaloglu, Ihsan
论文数: 0引用数: 0
h-index: 0
机构:
Virginia Commonwealth Univ, Dept Math & Appl Math, Med Coll Virginia Campus, Richmond, VA 23284 USAUniv Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
Topaloglu, Ihsan
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE,
2020,
37
(02):
: 239
-
279