We consider in this work the problem of minimizing the von Neumann entropy under the constraints that the density of particles, the current, and the kinetic energy of the system is fixed at each point of space. The unique minimizer is a self-adjoint positive trace class operator, and our objective is to characterize its form. We will show that this minimizer is solution to a self-consistent nonlinear eigenvalue problem. One of the main difficulties in the proof is to parametrize the feasible set in order to derive the Euler-Lagrange equation, and we will proceed by constructing an appropriate form of perturbations of the minimizer. The question of deriving quantum statistical equilibria is at the heart of the quantum hydrodynamical models introduced by Degond and Ringhofer (J Statist Phys 112:(3-4), 587-628, 2003). An original feature of the problem is the local nature of constraints, i.e. they depend on position, while more classical models consider the total number of particles, the total current and the total energy in the system to be fixed.
机构:
CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USACALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
Berta, Mario
Furrer, Fabian
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tokyo, Grad Sch Sci, Dept Phys, Tokyo 113, Japan
Leibniz Univ Hannover, Inst Theoret Phys, Hannover, GermanyCALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
Furrer, Fabian
Scholz, Volkher B.
论文数: 0引用数: 0
h-index: 0
机构:
ETH, Inst Theoret Phys, Zurich, SwitzerlandCALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
机构:
Shaanxi Normal Univ, Sch Math & Informat Sci, Xian 710062, Shaanxi, Peoples R ChinaShaanxi Normal Univ, Sch Math & Informat Sci, Xian 710062, Shaanxi, Peoples R China
Li, Jing
Cao, Huaixin
论文数: 0引用数: 0
h-index: 0
机构:
Shaanxi Normal Univ, Sch Math & Informat Sci, Xian 710062, Shaanxi, Peoples R ChinaShaanxi Normal Univ, Sch Math & Informat Sci, Xian 710062, Shaanxi, Peoples R China
机构:
Lanzhou Univ, Sch Phys Sci & Technol, Lanzhou 730000, Gansu, Peoples R China
Lanzhou Univ, Key Lab Magnetism & Magnet Mat MOE, Lanzhou 730000, Gansu, Peoples R ChinaLanzhou Univ, Sch Phys Sci & Technol, Lanzhou 730000, Gansu, Peoples R China
Liu, Chen-Rong
Yu, Pei
论文数: 0引用数: 0
h-index: 0
机构:
Lanzhou Univ, Sch Phys Sci & Technol, Lanzhou 730000, Gansu, Peoples R China
Lanzhou Univ, Key Lab Magnetism & Magnet Mat MOE, Lanzhou 730000, Gansu, Peoples R ChinaLanzhou Univ, Sch Phys Sci & Technol, Lanzhou 730000, Gansu, Peoples R China
Yu, Pei
Chen, Xian-Zhang
论文数: 0引用数: 0
h-index: 0
机构:
Lanzhou Univ, Sch Phys Sci & Technol, Lanzhou 730000, Gansu, Peoples R China
Lanzhou Univ, Key Lab Magnetism & Magnet Mat MOE, Lanzhou 730000, Gansu, Peoples R ChinaLanzhou Univ, Sch Phys Sci & Technol, Lanzhou 730000, Gansu, Peoples R China
Chen, Xian-Zhang
Xu, Hong-Ya
论文数: 0引用数: 0
h-index: 0
机构:
Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USALanzhou Univ, Sch Phys Sci & Technol, Lanzhou 730000, Gansu, Peoples R China
Xu, Hong-Ya
Huang, Liang
论文数: 0引用数: 0
h-index: 0
机构:
Lanzhou Univ, Sch Phys Sci & Technol, Lanzhou 730000, Gansu, Peoples R China
Lanzhou Univ, Key Lab Magnetism & Magnet Mat MOE, Lanzhou 730000, Gansu, Peoples R ChinaLanzhou Univ, Sch Phys Sci & Technol, Lanzhou 730000, Gansu, Peoples R China
Huang, Liang
Lai, Ying-Cheng
论文数: 0引用数: 0
h-index: 0
机构:
Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA
Arizona State Univ, Dept Phys, Tempe, AZ 85287 USALanzhou Univ, Sch Phys Sci & Technol, Lanzhou 730000, Gansu, Peoples R China