Potential functions on Grassmannians of planes and cluster transformations

被引:0
作者
Nohara, Yuichi [1 ]
Ueda, Kazushi [2 ]
机构
[1] Meiji Univ, Dept Math, Sch Sci & Technol, Tama Ku, 1-1-1 Higashi Mita, Kawasaki, Kanagawa 2148571, Japan
[2] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
关键词
GELFAND-CETLIN SYSTEM; TORIC DEGENERATIONS; MIRROR SYMMETRY; INTEGRABLE SYSTEMS; TORUS FIBERS; ALGEBRAS; COHOMOLOGY; POLYGONS; GEOMETRY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
With a triangulation of a planar polygon with n sides, one can associate an integrable system on the Grassmannian of 2-planes in an n-space. In this paper, we show that the potential functions of Lagrangian torus fibers of the integrable systems associated with different triangulations glue together by cluster transformations. We also prove that the cluster transformations coincide with the wall-crossing formula in Lagrangian intersection Floer theory.
引用
收藏
页码:559 / 612
页数:54
相关论文
共 38 条
  • [21] Hausmann J., 1997, ENSEIGN MATH, V43, P173
  • [22] The Toric Geometry of Triangulated Polygons in Euclidean Space
    Howard, Benjamin
    Manon, Christopher
    Millson, John
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2011, 63 (04): : 878 - 937
  • [23] Kapovich M, 1996, J DIFFER GEOM, V44, P479
  • [24] KLYACHKO AA, 1994, A MATHEMAT, V25, P67
  • [25] Marsh Robert, ARXIV13071085
  • [26] Toric degenerations of Gelfand-Cetlin systems and potential functions
    Nishinou, Takeo
    Nohara, Yuichi
    Ueda, Kazushi
    [J]. ADVANCES IN MATHEMATICS, 2010, 224 (02) : 648 - 706
  • [27] Floer cohomologies of non-torus fibers of the Gelfand-Cetlin system YUICHI NOHARA AND KAZUSHI UEDA
    Nohara, Yuichi
    Ueda, Kazushi
    [J]. JOURNAL OF SYMPLECTIC GEOMETRY, 2016, 14 (04) : 1251 - 1293
  • [28] TORIC DEGENERATIONS OF INTEGRABLE SYSTEMS ON GRASSMANNIANS AND POLYGON SPACES
    Nohara, Yuichi
    Ueda, Kazushi
    [J]. NAGOYA MATHEMATICAL JOURNAL, 2014, 214 : 125 - 168
  • [29] Pascaleff James, 2017, ARXIV171103209
  • [30] Rietsch K, 2001, DUKE MATH J, V110, P523