Potential functions on Grassmannians of planes and cluster transformations

被引:0
作者
Nohara, Yuichi [1 ]
Ueda, Kazushi [2 ]
机构
[1] Meiji Univ, Dept Math, Sch Sci & Technol, Tama Ku, 1-1-1 Higashi Mita, Kawasaki, Kanagawa 2148571, Japan
[2] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
关键词
GELFAND-CETLIN SYSTEM; TORIC DEGENERATIONS; MIRROR SYMMETRY; INTEGRABLE SYSTEMS; TORUS FIBERS; ALGEBRAS; COHOMOLOGY; POLYGONS; GEOMETRY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
With a triangulation of a planar polygon with n sides, one can associate an integrable system on the Grassmannian of 2-planes in an n-space. In this paper, we show that the potential functions of Lagrangian torus fibers of the integrable systems associated with different triangulations glue together by cluster transformations. We also prove that the cluster transformations coincide with the wall-crossing formula in Lagrangian intersection Floer theory.
引用
收藏
页码:559 / 612
页数:54
相关论文
共 38 条
  • [1] Abouzaid Mohammed, PUBL MATH I HAUTES E
  • [2] Auroux D., 2009, SURVEYS DIFFERENTIAL, V13, P1
  • [3] Auroux Denis, 2007, J. Gokova Geom. Topol. GGT, V1, P51
  • [4] Conifold transitions and mirror symmetry for Calabi-Yau complete intersections in Grassmannians
    Batyrev, VV
    Ciocan-Fontanine, I
    Kim, B
    van Straten, D
    [J]. NUCLEAR PHYSICS B, 1998, 514 (03) : 640 - 666
  • [5] Mirror symmetry and toric degenerations of partial flag manifolds
    Batyrev, VV
    Ciocan-Fontanine, I
    Kim, B
    Van Straten, D
    [J]. ACTA MATHEMATICA, 2000, 184 (01) : 1 - 39
  • [6] Lagrangian Torus Fibrations and Homological Mirror Symmetry for the Conifold
    Chan, Kwokwai
    Pomerleano, Daniel
    Ueda, Kazushi
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 341 (01) : 135 - 178
  • [7] Cho CH, 2006, ASIAN J MATH, V10, P773
  • [8] Cho Y., ARXIV170407213
  • [9] Cho Yunhyung, ARXIV180107554
  • [10] Gravitational quantum cohomology
    Eguchi, T
    Hori, K
    Xiong, CS
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1997, 12 (09): : 1743 - 1782