Composite disturbance rejection control of Korteweg-de Vries-Burgers equation under event-triggering mechanism

被引:2
|
作者
Zhang, Jing [1 ]
Kang, Wen [2 ,3 ,4 ]
机构
[1] Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing 100083, Peoples R China
[2] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
[3] Beijing Inst Technol, MIIT Key Lab Math Theory & Computat Informat Secu, Beijing 102488, Peoples R China
[4] Univ Sci & Technol Beijing, Shunde Grad Sch, Foshan 528300, Peoples R China
来源
IFAC PAPERSONLINE | 2022年 / 55卷 / 26期
基金
中国国家自然科学基金;
关键词
Disturbance-observer-based control; event-triggering mechanism; H-infinity control; Korteweg-de Vries-Burgers equation; SYSTEMS; PDE;
D O I
10.1016/j.ifacol.2022.10.390
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article studies a composite disturbance rejection control strategy containing disturbance-observer-based control (DOBC) and control for a Korteweg-de Vries-Burgers (KdVB) equation under the point measurements. Here two types of disturbances are considered: one is described by an exogenous system, and the other is an external disturbance in the L-2-sense. To significantly reduce the transmitted measurements, an event-triggering mechanism (ETM) is utilized. In the framework of networked control system, quantization and communication delay of the measured signals are also taken into account. Sufficient regional exponential stability conditions are established by linear matrix inequalities (LMIs). The effectiveness of the proposed control law is verified by simulation results. Copyright (C) 2022 The Authors.
引用
收藏
页码:137 / 142
页数:6
相关论文
共 50 条
  • [1] Disturbance rejection approaches of Korteweg-de Vries-Burgers equation under event-triggering mechanism☆
    Kang, Wen
    Zhang, Jing
    Wang, Jun-Min
    AUTOMATICA, 2024, 169
  • [2] Boundary Stabilization of the Korteweg-de Vries Equation and the Korteweg-de Vries-Burgers Equation
    Chaohua Jia
    Bing-Yu Zhang
    Acta Applicandae Mathematicae, 2012, 118 : 25 - 47
  • [3] Boundary Stabilization of the Korteweg-de Vries Equation and the Korteweg-de Vries-Burgers Equation
    Jia, Chaohua
    Zhang, Bing-Yu
    ACTA APPLICANDAE MATHEMATICAE, 2012, 118 (01) : 25 - 47
  • [4] Asymptotics for the Korteweg-de Vries-Burgers Equation
    Nakao HAYASHI
    Pavel I.NAUMKIN
    ActaMathematicaSinica(EnglishSeries), 2006, 22 (05) : 1441 - 1456
  • [5] Asymptotics for the Korteweg-de Vries-Burgers equation
    Hayashi, Nakao
    Naumkin, Pavel I.
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (05) : 1441 - 1456
  • [6] CONTROLLABILITY OF THE KORTEWEG-DE VRIES-BURGERS EQUATION
    Zhou, Hang
    Han, Yuecai
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2016, 6 (01): : 207 - 215
  • [7] Inverse Optimal Control of Korteweg-de Vries-Burgers Equation
    Cai, Xiushan
    Lin, Yuhang
    Zhan, Xisheng
    Wan, Liguang
    Liu, Leibo
    Lin, Cong
    IFAC PAPERSONLINE, 2023, 56 (02): : 1351 - 1356
  • [8] Solitary waves of the Korteweg-de Vries-Burgers' equation
    Zaki, SI
    COMPUTER PHYSICS COMMUNICATIONS, 2000, 126 (03) : 207 - 218
  • [9] Boundary control of stochastic Korteweg-de Vries-Burgers equations
    Liang, Shuang
    Wu, Kai-Ning
    NONLINEAR DYNAMICS, 2022, 108 (04) : 4093 - 4102
  • [10] Robust stabilization the Korteweg-de Vries-Burgers equation by boundary control
    Sakthivel, Rathinasamy
    NONLINEAR DYNAMICS, 2009, 58 (04) : 739 - 744