Relative isoperimetric inequalities and sufficient conditions for finite perimeter on metric spaces

被引:19
作者
Korte, Riikka [1 ]
Lahti, Panu [2 ]
机构
[1] Univ Helsinki, Dept Math & Stat, FI-00014 Helsinki, Finland
[2] Aalto Univ, Dept Math, FI-00076 Espoo, Finland
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2014年 / 31卷 / 01期
基金
芬兰科学院;
关键词
LIPSCHITZ FUNCTIONS; CAPACITIES; DENSITY; POINTS;
D O I
10.1016/j.anihpc.2013.01.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study equivalence between the Poincare inequality and several different relative isoperimetric inequalities on metric measure spaces. We then use these inequalities to establish sufficient conditions for the finite perimeter of sets. (C) 2013 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:129 / 154
页数:26
相关论文
共 34 条
  • [1] THE DISCRETE MAXIMAL OPERATOR IN METRIC SPACES
    Aalto, Daniel
    Kinnunen, Juha
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2010, 111 : 369 - 390
  • [2] Fine properties of sets of finite perimeter in doubling metric measure spaces
    Ambrosio, L
    [J]. SET-VALUED ANALYSIS, 2002, 10 (2-3): : 111 - 128
  • [3] Ambrosio L., 2000, Oxford Mathematical Monographs
  • [4] Ambrosio L., 2004, OXFORD LECT SER MATH, V25
  • [5] [Anonymous], 2000, Oxford Mathematical Monographs
  • [6] [Anonymous], 1992, Measure theory and fine properties of functions
  • [7] [Anonymous], 1989, GRAD TEXTS MATH
  • [8] Björn A, 2008, HOUSTON J MATH, V34, P1197
  • [9] Bjorn A, 2011, EMS TRACTS MATH, V17, P1, DOI 10.4171/099
  • [10] Bobkov SG, 1997, MEM AM MATH SOC, V129, P1