Highly Stabilized Ni-Rich Cathode Material with Mo Induced Epitaxially Grown Nanostructured Hybrid Surface for High-Performance Lithium-Ion Batteries

被引:161
作者
Xu, Chunliu [1 ,2 ]
Xiang, Wei [1 ,4 ]
Wu, Zhenguo [2 ]
Xu, Yadi [2 ]
Li, Yongchun [2 ]
Wang, Yuan [2 ]
Xiao, Yao [2 ]
Guo, Xiaodong [2 ,3 ]
Zhong, Benhe [2 ]
机构
[1] Chengdu Univ Technol, Coll Mat & Chem & Chem Engn, Chengdu 610059, Sichuan, Peoples R China
[2] Sichuan Univ, Sch Chem Engn, Chengdu 610065, Sichuan, Peoples R China
[3] Univ Wollongong, Australian Inst Innovat Mat, Inst Supercond & Elect Mat, Innovat Campus,Squires Way, North Wollongong, NSW 2522, Australia
[4] Ruyuan Hec Technol Corp, Postdoctoral Mobile Res Ctr, Ruyuan 512000, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
surface modification; NiO-like phase; heterostructure; Ni-rich; gradient; TRANSITION-METAL OXIDE; HIGH-ENERGY; CORE-SHELL; DENSITY; LAYER;
D O I
10.1021/acsami.9b03403
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Capacity fading induced by unstable surface chemical properties and intrinsic structural degradation is a critical challenge for the commercial utilization of Ni-rich cathodes. Here, a highly stabilized Ni-rich cathode with enhanced rate capability and cycling life is constructed by coating the molybdenum compound on the surface of LiNi0.815Co0.15Al0.035O2 secondary particles. The infused Mo ions in the boundaries not only induce the Li2MoO4 layer in the outermost but also form an epitaxially grown outer surface region with a NiO-like phase and an enriched content of Mo6+ on the bulk phase. The Li2MoO4 layer is expected to reduce residential lithium species and promote the Li+ transfer kinetics. The transition NiO-like phase, as a pillaring layer, could maintain the integrity of the crystal structure. With the suppressed electrolyte-cathode interfacial side reactions, structure degradation, and intergranular cracking, the modified cathode with 1% Mo exhibits a superior discharge capacity of 140 mAh g(-1) at 10 C, a superior cycling performance with a capacity retention of 95.7% at 5 C after 250 cycles, and a high thermal stability.
引用
收藏
页码:16629 / 16638
页数:10
相关论文
共 50 条
[31]   Improving the structural stability of Li-rich cathode materials via reservation of cations in the Li-slab for Li-ion batteries [J].
Shi, Ji-Lei ;
Xiao, Dong-Dong ;
Zhang, Xu-Dong ;
Yin, Ya-Xia ;
Guo, Yu-Guo ;
Gu, Lin ;
Wan, Li-Jun .
NANO RESEARCH, 2017, 10 (12) :4201-4209
[32]   Mitigating Voltage Decay of Li-Rich Cathode Material via Increasing Ni Content for Lithium-Ion Batteries [J].
Shi, Ji-Lei ;
Zhang, Jie-Nan ;
He, Min ;
Zhang, Xu-Dong ;
Yin, Ya-Xia ;
Li, Hong ;
Guo, Yu-Guo ;
Gu, Lin ;
Wan, Li-Jun .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (31) :20138-20146
[33]   Long-Life Nickel-Rich Layered Oxide Cathodes with a Uniform Li2ZrO3 Surface Coating for Lithium-Ion Batteries [J].
Song, Bohang ;
Li, Wangda ;
Oh, Seung-Min ;
Manthiram, Arumugam .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (11) :9718-9725
[34]   Understanding the Origin of Enhanced Performances in Core-Shell and Concentration-Gradient Layered Oxide Cathode Materials [J].
Song, Dawei ;
Hou, Peiyu ;
Wang, Xiaoqing ;
Shi, Xixi ;
Zhang, Lianqi .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (23) :12864-12872
[35]  
Sun YK, 2012, NAT MATER, V11, P942, DOI [10.1038/nmat3435, 10.1038/NMAT3435]
[36]   Single-particle measurements of electrochemical kinetics in NMC and NCA cathodes for Li-ion batteries [J].
Tsai, Ping-Chun ;
Wen, Bohua ;
Wolfman, Mark ;
Choe, Min-Ju ;
Pan, Menghsuan Sam ;
Su, Liang ;
Thornton, Katsuyo ;
Cabana, Jordi ;
Chiang, Yet-Ming .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (04) :860-871
[37]   Effect of heat-treatment on the surface structure and electrochemical behavior of AlPO4-coated LiNi1/3Co1/3Mn1/3O2 cathode materials [J].
Wang, Jian-Hua ;
Wang, Yu ;
Guo, Yu-Zhong ;
Ren, Zhao-Ying ;
Liu, Chang-Wei .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (15) :4879-4884
[38]   Improving the reversibility of the H2-H3 phase transitions for layered Ni-rich oxide cathode towards retarded structural transition and enhanced cycle stability [J].
Wu, Feng ;
Liu, Na ;
Chen, Lai ;
Su, Yuefeng ;
Tan, Guoqiang ;
Bao, Liying ;
Zhang, Qiyu ;
Lu, Yun ;
Wang, Jing ;
Chen, Shi ;
Tan, Jing .
NANO ENERGY, 2019, 59 :50-57
[39]   Enhanced electrochemical properties of lithium-reactive V2O5 coated on the LiNi0.8Co0.1Mn0.1O2 cathode material for lithium ion batteries at 60 °C [J].
Xiong, Xunhui ;
Wang, Zhixing ;
Guo, Huajun ;
Zhang, Qian ;
Li, Xinhai .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (04) :1284-1288
[40]   Constructing a Protective Pillaring Layer by Incorporating Gradient Mn4+ to Stabilize the Surface/Interfacial Structure of LiNi0.815Co0.15Al0.035O2 Cathode [J].
Xu, Chun-Liu ;
Xiang, Wei ;
Wu, Zhen-Guo ;
Xu, Ya-Di ;
Li, Yong-Chun ;
Chen, Ming-Zhe ;
Guo XiaoDong ;
Lv, Gen-Pin ;
Zhang, Jun ;
Zhong, Ben-He .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (33) :27821-27830