Highly Stabilized Ni-Rich Cathode Material with Mo Induced Epitaxially Grown Nanostructured Hybrid Surface for High-Performance Lithium-Ion Batteries

被引:161
作者
Xu, Chunliu [1 ,2 ]
Xiang, Wei [1 ,4 ]
Wu, Zhenguo [2 ]
Xu, Yadi [2 ]
Li, Yongchun [2 ]
Wang, Yuan [2 ]
Xiao, Yao [2 ]
Guo, Xiaodong [2 ,3 ]
Zhong, Benhe [2 ]
机构
[1] Chengdu Univ Technol, Coll Mat & Chem & Chem Engn, Chengdu 610059, Sichuan, Peoples R China
[2] Sichuan Univ, Sch Chem Engn, Chengdu 610065, Sichuan, Peoples R China
[3] Univ Wollongong, Australian Inst Innovat Mat, Inst Supercond & Elect Mat, Innovat Campus,Squires Way, North Wollongong, NSW 2522, Australia
[4] Ruyuan Hec Technol Corp, Postdoctoral Mobile Res Ctr, Ruyuan 512000, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
surface modification; NiO-like phase; heterostructure; Ni-rich; gradient; TRANSITION-METAL OXIDE; HIGH-ENERGY; CORE-SHELL; DENSITY; LAYER;
D O I
10.1021/acsami.9b03403
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Capacity fading induced by unstable surface chemical properties and intrinsic structural degradation is a critical challenge for the commercial utilization of Ni-rich cathodes. Here, a highly stabilized Ni-rich cathode with enhanced rate capability and cycling life is constructed by coating the molybdenum compound on the surface of LiNi0.815Co0.15Al0.035O2 secondary particles. The infused Mo ions in the boundaries not only induce the Li2MoO4 layer in the outermost but also form an epitaxially grown outer surface region with a NiO-like phase and an enriched content of Mo6+ on the bulk phase. The Li2MoO4 layer is expected to reduce residential lithium species and promote the Li+ transfer kinetics. The transition NiO-like phase, as a pillaring layer, could maintain the integrity of the crystal structure. With the suppressed electrolyte-cathode interfacial side reactions, structure degradation, and intergranular cracking, the modified cathode with 1% Mo exhibits a superior discharge capacity of 140 mAh g(-1) at 10 C, a superior cycling performance with a capacity retention of 95.7% at 5 C after 250 cycles, and a high thermal stability.
引用
收藏
页码:16629 / 16638
页数:10
相关论文
共 50 条
[1]   The effect of gradient boracic polyanion-doping on structure, morphology, and cycling performance of Ni-rich LiNi0.8Co0.15Al0.05O2 cathode material [J].
Chen, Tao ;
Li, Xiang ;
Wang, Hao ;
Yan, Xinxiu ;
Wang, Lei ;
Deng, Bangwei ;
Ge, Wujie ;
Qu, Meizhen .
JOURNAL OF POWER SOURCES, 2018, 374 :1-11
[2]   A New Type of Protective Surface Layer for High-Capacity Ni-Based Cathode Materials: Nanoscaled Surface Pillaring Layer [J].
Cho, Yonghyun ;
Oh, Pilgun ;
Cho, Jaephil .
NANO LETTERS, 2013, 13 (03) :1145-1152
[3]   Spinel-Layered Core-Shell Cathode Materials for Li-Ion Batteries [J].
Cho, Yonghyun ;
Lee, Sanghan ;
Lee, Yongseok ;
Hong, Taeeun ;
Cho, Jaephil .
ADVANCED ENERGY MATERIALS, 2011, 1 (05) :821-828
[4]   Improved electrochemical properties of Li(Ni0.6Mn0.2Co0.2)O2 by surface coating with Li1.3Al0.3Ti1.7(PO4)3 [J].
Choi, Ji-won ;
Lee, Jae-won .
JOURNAL OF POWER SOURCES, 2016, 307 :63-68
[5]   A high performance layered transition metal oxide cathode material obtained by simultaneous aluminum and iron cationic substitution [J].
El Mofid, Wassima ;
Ivanov, Svetlozar ;
Konkin, Alexander ;
Bund, Andreas .
JOURNAL OF POWER SOURCES, 2014, 268 :414-422
[6]   Structural, electrochemical and Li-ion transport properties of Zr-modified LiNi0.8Co0.1Mn0.1O2 positive electrode materials for Li-ion batteries [J].
Gao, Shuang ;
Zhan, Xiaowen ;
Cheng, Yang-Tse .
JOURNAL OF POWER SOURCES, 2019, 410 :45-52
[7]   Sufficient Utilization of Zirconium Ions to Improve the Structure and Surface properties of Nickel-Rich Cathode Materials for Lithium-Ion Batteries [J].
He, Tao ;
Lu, Yun ;
Su, Yuefeng ;
Bao, Liying ;
Tan, Jing ;
Chen, Lai ;
Zhang, Qiyu ;
Li, Weikang ;
Chen, Shi ;
Wu, Feng .
CHEMSUSCHEM, 2018, 11 (10) :1639-1648
[8]   Surface/Interfacial Structure and Chemistry of High-Energy Nickel-Rich Layered Oxide Cathodes: Advances and Perspectives [J].
Hou, Peiyu ;
Yin, Jiangmei ;
Ding, Meng ;
Huang, Jinzhao ;
Xu, Xijin .
SMALL, 2017, 13 (45)
[9]   Na-doped Ni-rich LiNi0.5Co0.2Mn0.3O2 cathode material with both high rate capability and high tap density for lithium ion batteries [J].
Hua, Weibo ;
Zhang, Jibin ;
Zheng, Zhuo ;
Liu, Wenyuan ;
Peng, Xihao ;
Guo, Xiao-Dong ;
Zhong, Benhe ;
Wang, Yan-Jie ;
Wang, Xinlong .
DALTON TRANSACTIONS, 2014, 43 (39) :14824-14832
[10]   An effective method to reduce residual lithium compounds on Ni-rich Li[Ni0.6Co0.2Mn0.2]O2 active material using a phosphoric acid derived Li3PO4 nanolayer [J].
Jo, Chang-Heum ;
Cho, Dae-Hyun ;
Noh, Hyung-Joo ;
Yashiro, Hithshi ;
Sun, Yang-Kook ;
Myung, Seung Taek .
NANO RESEARCH, 2015, 8 (05) :1464-1479