UNIVERSAL DEFORMATION RINGS AND DIHEDRAL DEFECT GROUPS

被引:12
作者
Bleher, Frauke M. [1 ]
机构
[1] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
关键词
Universal deformation rings; dihedral defect groups; special biserial algebras; stable endomorphism rings; COMPLETE-INTERSECTIONS; ELLIPTIC-CURVES; EQUIVALENCES; ALGEBRAS; BLOCKS; MODULES; NEED;
D O I
10.1090/S0002-9947-09-04543-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k be an algebraically closed field of characteristic 2, and let W be the ring of infinite Witt vectors over k. Suppose G is a finite group and B is a block of kG with dihedral defect group D, which is Morita equivalent to the principal 2-modular block of a finite simple group. We determine the universal deformation ring R(G, V) for every kG-module V which belongs to B and has stable endomorphism ring k. It follows that R(G, V) is always isomorphic to a subquotient ring of WD. Moreover, we obtain an infinite series of examples of universal deformation rings which are not complete intersections.
引用
收藏
页码:3661 / 3705
页数:45
相关论文
共 36 条
[1]  
Alperin J. L., 1986, CAMBRIDGE STUDIES AD, V11
[2]  
[Anonymous], 1965, J. Algebra, V2, P218
[3]  
Auslander M., 1995, CAMBRIDGE STUDIES AD, V36
[4]  
Benson D.J., 1991, Cambridge Studies in Advanced Mathematics, V30
[5]   Deformations and derived equivalences [J].
Bleher, FM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (09) :2503-2510
[6]   Universal deformation rings need not be complete intersections [J].
Bleher, FM ;
Chinburg, T .
COMPTES RENDUS MATHEMATIQUE, 2006, 342 (04) :229-232
[7]   Universal deformation rings and Klein four defect groups [J].
Bleher, FM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (10) :3893-3906
[8]   Universal deformation rings and cyclic blocks [J].
Bleher, FM ;
Chinburg, T .
MATHEMATISCHE ANNALEN, 2000, 318 (04) :805-836
[9]   Universal deformation rings need not be complete intersections [J].
Bleher, Frauke M. ;
Chinburg, Ted .
MATHEMATISCHE ANNALEN, 2007, 337 (04) :739-767
[10]  
Brauer R., 1974, Symp. Math., V13, P367