Continuity results for parametric nonlinear singular Dirichlet problems

被引:12
作者
Bai, Yunru [1 ]
Motreanu, Dumitru [2 ]
Zeng, Shengda [1 ]
机构
[1] Jagiellonian Univ Krakow, Fac Math & Comp Sci, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
[2] Univ Perpignan, Dept Math, F-66860 Perpignan, France
基金
欧盟地平线“2020”;
关键词
Parametric singular elliptic equation; p-Laplacian; smallest solution; sequential continuity; monotonicity; MULTIPLE CONSTANT SIGN; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; NODAL SOLUTIONS; BIFURCATION; CONVECTION; EXISTENCE;
D O I
10.1515/anona-2020-0005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study from a qualitative point of view the nonlinear singular Dirichlet problem depending on a parameter lambda > 0 that was considered in [32]. Denoting by S-lambda the set of positive solutions of the problem corresponding to the parameter lambda, we establish the following essential properties of S lambda: (i) there exists a smallest element u(lambda)* in S-lambda, and the mapping lambda -> u(lambda)* is (strictly) increasing and left continuous; (ii) the set-valued mapping lambda -> S-lambda is sequentially continuous.
引用
收藏
页码:372 / 387
页数:16
相关论文
共 50 条
  • [21] SOLUTIONS OF NONLINEAR NONHOMOGENEOUS NEUMANN AND DIRICHLET PROBLEMS
    Hu, Shouchuan
    Papageorgiou, Nikolas S.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (06) : 2889 - 2922
  • [22] Regularity results for a class of nonlinear fractional Laplacian and singular problems
    Arora, Rakesh
    Giacomoni, Jacques
    Warnault, Guillaume
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2021, 28 (03):
  • [23] SOLVABILITY OF SOLUTION OF SINGULAR AND DEGENERATE FRACTIONAL NONLINEAR PARABOLIC DIRICHLET PROBLEMS
    Ahmed, Bourabta
    Taki-Eddine, Oussaeif
    Imad, Rezzoug
    Zainouba, Chebana
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2022, 17 (01): : 105 - 123
  • [24] Holder continuity results for nonconvex parametric generalized vector quasiequilibrium problems via nonlinear scalarizing functions
    Chen, Chun-Rong
    Li, Li-Li
    Li, Ming-Hua
    OPTIMIZATION, 2016, 65 (01) : 35 - 51
  • [25] SINGULAR ELLIPTIC PROBLEMS WITH DIRICHLET OR MIXED DIRICHLET-NEUMANN NON-HOMOGENEOUS BOUNDARY CONDITIONS
    Godoy, Tomas
    OPUSCULA MATHEMATICA, 2023, 43 (01) : 19 - 46
  • [26] UNIQUENESS OF SOLUTIONS FOR NONLINEAR DIRICHLET PROBLEMS WITH SUPERCRITICAL GROWTH
    Molle, Riccardo
    Passaseo, Donato
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2021, 57 (02) : 535 - 546
  • [27] Trace inequalities of the Sobolev type and nonlinear Dirichlet problems
    Hara, Takanobu
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (06)
  • [28] Parametric Singular Problems with an Indefinite Perturbation
    Bien, Krzysztof
    Majdak, Witold
    Papageorgiou, Nikolaos S.
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (04)
  • [29] Comparison results for nonlinear degenerate Dirichlet and Neumann problems with general growth in the gradient
    Tian, Yujuan
    Li, Fengquan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 378 (02) : 749 - 763
  • [30] SINGULARLY PERTURBED NONLINEAR DIRICHLET PROBLEMS WITH A GENERAL NONLINEARITY
    Byeon, Jaeyoung
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (04) : 1981 - 2001