Hamiltonian Frenet-Serret dynamics

被引:6
作者
Capovilla, R
Guven, J
Rojas, E
机构
[1] IPN, Ctr Invest & Estudios Avanzados, Dept Fis, Mexico City 07000, DF, Mexico
[2] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico
[3] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA
关键词
D O I
10.1088/0264-9381/19/8/315
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Hamiltonian formulation of the dynamics of a relativistic particle described by a higher derivative action that depends both on the first and the second Frenet-Serret curvatures is considered from a geometrical perspective. We demonstrate how reparametrization covariant dynamical variables and their projections onto the Frenet-Serret frame can be exploited to provide not only a significant simplification of but also novel insights into the canonical analysis. The constraint algebra and the Hamiltonian equations of motion are written down and a geometrical interpretation is provided for the canonical variables.
引用
收藏
页码:2277 / 2290
页数:14
相关论文
共 22 条
[1]  
ARREAGA G, 2001, IN PRESS CLASS QUANT
[2]  
GUVEN J, 1992, PHYS REV D, V44, P3360
[3]   THE MEMBRANE-PROPERTIES OF CONDENSING STRINGS [J].
KLEINERT, H .
PHYSICS LETTERS B, 1986, 174 (03) :335-338
[4]   THE MODEL OF THE RELATIVISTIC PARTICLE WITH CURVATURE AND TORSION [J].
KUZNETSOV, YA ;
PLYUSHCHAY, MS .
NUCLEAR PHYSICS B, 1993, 389 (01) :181-205
[5]  
NERSESSIAN A, 1998, HEPTH9805009
[6]  
NERSESSIAN A, 1999, HEPTH9904192
[7]   Lagrangian model of a massless particle on spacelike curves [J].
Nersesyan, AP .
THEORETICAL AND MATHEMATICAL PHYSICS, 2001, 126 (02) :147-160
[8]   CURVATURE AND TORSION OF THE WORLD CURVE IN THE ACTION OF THE RELATIVISTIC PARTICLE [J].
NESTERENKO, VV .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (12) :3315-3320
[9]   ON SQUARING THE PRIMARY CONSTRAINTS IN A GENERALIZED HAMILTONIAN-DYNAMICS [J].
NESTERENKO, VV .
PHYSICS LETTERS B, 1994, 327 (1-2) :50-55
[10]   DYNAMICS OF RELATIVISTIC-PARTICLES WITH LAGRANGIANS DEPENDENT ON ACCELERATION [J].
NESTERENKO, VV ;
FEOLI, A ;
SCARPETTA, G .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (10) :5552-5564