Two-Stage Metropolis-Hastings for Tall Data

被引:9
|
作者
Payne, Richard D. [1 ]
Mallick, Bani K. [1 ]
机构
[1] Texas A&M Univ, College Stn, TX 77843 USA
关键词
Bayesian inference; Logistic model; Bayesian multivariate adaptive regression splines; Markov chain monte carlo; Metropolis-hastings algorithm; Tall data; CLASSIFICATION; UNCERTAINTY;
D O I
10.1007/s00357-018-9248-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper discusses the challenges presented by tall data problems associated with Bayesian classification (specifically binary classification) and the existing methods to handle them. Current methods include parallelizing the likelihood, subsampling, and consensus Monte Carlo. A new method based on the two-stage Metropolis-Hastings algorithm is also proposed. The purpose of this algorithm is to reduce the exact likelihood computational cost in the tall data situation. In the first stage, a new proposal is tested by the approximate likelihood based model. The full likelihood based posterior computation will be conducted only if the proposal passes the first stage screening. Furthermore, this method can be adopted into the consensus Monte Carlo framework. The two-stage method is applied to logistic regression, hierarchical logistic regression, and Bayesian multivariate adaptive regression splines.
引用
收藏
页码:29 / 51
页数:23
相关论文
共 50 条
  • [1] Two-Stage Metropolis-Hastings for Tall Data
    Richard D. Payne
    Bani K. Mallick
    Journal of Classification, 2018, 35 : 29 - 51
  • [2] Metropolis-Hastings via Classification
    Kaji, Tetsuya
    Rockova, Veronika
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (544) : 2533 - 2547
  • [3] On the Poisson equation for Metropolis-Hastings chains
    Mijatovic, Aleksandar
    Vogrinc, Jure
    BERNOULLI, 2018, 24 (03) : 2401 - 2428
  • [4] Metropolis-Hastings transition kernel couplings
    O'Leary, John
    Wang, Guanyang
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (02): : 1101 - 1124
  • [5] Metropolis-Hastings algorithms with adaptive proposals
    Cai, Bo
    Meyer, Renate
    Perron, Francois
    STATISTICS AND COMPUTING, 2008, 18 (04) : 421 - 433
  • [6] Variance reduction for Metropolis-Hastings samplers
    Alexopoulos, Angelos
    Dellaportas, Petros
    Titsias, Michalis K.
    STATISTICS AND COMPUTING, 2023, 33 (01)
  • [7] On adaptive Metropolis-Hastings methods
    Griffin, Jim E.
    Walker, Stephen G.
    STATISTICS AND COMPUTING, 2013, 23 (01) : 123 - 134
  • [8] ADAPTIVE INDEPENDENT METROPOLIS-HASTINGS
    Holden, Lars
    Hauge, Ragnar
    Holden, Marit
    ANNALS OF APPLIED PROBABILITY, 2009, 19 (01) : 395 - 413
  • [9] UNDERSTANDING THE METROPOLIS-HASTINGS ALGORITHM
    CHIB, S
    GREENBERG, E
    AMERICAN STATISTICIAN, 1995, 49 (04) : 327 - 335
  • [10] Parallel Metropolis-Hastings Coupler
    Llorente, Fernando
    Martino, Luca
    Delgado, David
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (06) : 953 - 957