Wind Speed Extreme Quantiles Estimation

被引:0
|
作者
Chiodo, E. [1 ]
机构
[1] Univ Naples Federico II, Dept Elect Engn & Informat Technol, Naples, Italy
关键词
Bayes estimation; Gamma distribution; Lomax distribution; Wind Power; PHOTOVOLTAIC INVERTER RELIABILITY; BAYES ASSESSMENT; DISTRIBUTIONS;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Wind speed (WS) probability distribution identification and estimation are the object of an increasing number of studies, especially related to the need of wind energy production evaluation. In this framework, the paper highlights the characterization of extreme WS quantiles, whose values and estimates are very sensitive to the assumed distributional form. This is a crucial issue not only for wind energy production assessment, but also in risk and reliability analysis. For the above purposes, the Lomax model is theoretically deduced and analysed: this model, indeed, well represents the typical "heavy tails" in WS probabilistic distributions arising from field data. A proper Bayes approach for the estimation of both the Lomax survivor function and of the above quantiles is analyzed. A large set of numerical simulations has been performed, and some typical subsets of them are shown to illustrate the efficiency of the estimates, showing excellent results.
引用
收藏
页码:760 / 765
页数:6
相关论文
共 50 条
  • [21] Estimation of the extreme value index and extreme quantiles under random censoring
    Beirlant J.
    Guillou A.
    Dierckx G.
    Fils-Villetard A.
    Extremes, 2007, 10 (3) : 151 - 174
  • [22] ESTIMATION AND TESTING OF QUANTILES OF THE EXTREME-VALUE DISTRIBUTION
    HASSANEIN, KM
    SALEH, AKME
    BROWN, EF
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1986, 14 (03) : 389 - 400
  • [23] Estimation of Extreme Conditional Quantiles Through Power Transformation
    Wang, Huixia Judy
    Li, Deyuan
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2013, 108 (503) : 1062 - 1074
  • [24] Estimation of extreme quantiles conditioning on multivariate critical layers
    Di Bernardino, E.
    Palacios-Rodriguez, F.
    ENVIRONMETRICS, 2016, 27 (03) : 158 - 168
  • [25] MULTIMODEL APPROACH TO ESTIMATION OF EXTREME VALUE DISTRIBUTION QUANTILES
    Bogdanowicz, Ewa
    HYDROLOGIA W INZYNIERII I GOSPODARCE WODNEJ, VOL 1, 2010, (68): : 57 - 70
  • [26] Nonparametric Estimation of Extreme Conditional Quantiles with Functional Covariate
    Feng Yang HE
    Ye Bin CHENG
    Tie Jun TONG
    Acta Mathematica Sinica, 2018, 34 (10) : 1589 - 1610
  • [27] Nonparametric Estimation of Extreme Conditional Quantiles with Functional Covariate
    He, Feng Yang
    Cheng, Ye Bin
    Tong, Tie Jun
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2018, 34 (10) : 1589 - 1610
  • [28] Nonparametric Estimation of Extreme Quantiles with an Application to Longevity Risk
    Bolance, Catalina
    Guillen, Montserrat
    RISKS, 2021, 9 (04)
  • [29] ESTIMATION FOR EXTREME CONDITIONAL QUANTILES OF FUNCTIONAL QUANTILE REGRESSION
    Zhu, Hanbing
    Zhang, Riquan
    Li, Yehua
    Yao, Weixin
    STATISTICA SINICA, 2022, 32 : 1767 - 1787
  • [30] Estimation of extreme quantiles for functions of dependent random variables
    Gong, Jinguo
    Li, Yadong
    Peng, Liang
    Yao, Qiwei
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2015, 77 (05) : 1001 - 1024