Wind Speed Extreme Quantiles Estimation

被引:0
|
作者
Chiodo, E. [1 ]
机构
[1] Univ Naples Federico II, Dept Elect Engn & Informat Technol, Naples, Italy
关键词
Bayes estimation; Gamma distribution; Lomax distribution; Wind Power; PHOTOVOLTAIC INVERTER RELIABILITY; BAYES ASSESSMENT; DISTRIBUTIONS;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Wind speed (WS) probability distribution identification and estimation are the object of an increasing number of studies, especially related to the need of wind energy production evaluation. In this framework, the paper highlights the characterization of extreme WS quantiles, whose values and estimates are very sensitive to the assumed distributional form. This is a crucial issue not only for wind energy production assessment, but also in risk and reliability analysis. For the above purposes, the Lomax model is theoretically deduced and analysed: this model, indeed, well represents the typical "heavy tails" in WS probabilistic distributions arising from field data. A proper Bayes approach for the estimation of both the Lomax survivor function and of the above quantiles is analyzed. A large set of numerical simulations has been performed, and some typical subsets of them are shown to illustrate the efficiency of the estimates, showing excellent results.
引用
收藏
页码:760 / 765
页数:6
相关论文
共 50 条
  • [1] Simulation and Estimation of Extreme Quantiles and Extreme Probabilities
    Guyader, Arnaud
    Hengartner, Nicolas
    Matzner-Lober, Eric
    APPLIED MATHEMATICS AND OPTIMIZATION, 2011, 64 (02): : 171 - 196
  • [2] Simulation and Estimation of Extreme Quantiles and Extreme Probabilities
    Arnaud Guyader
    Nicolas Hengartner
    Eric Matzner-Løber
    Applied Mathematics & Optimization, 2011, 64 : 171 - 196
  • [3] A comparison of methods of extreme wind speed estimation
    An, Y
    Pandey, MD
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2005, 93 (07) : 535 - 545
  • [4] An estimation of the extreme wind speed using the Korea wind map
    Lee, Bong-Hee
    Ahn, Dong-Joon
    Kim, Hyun-Goo
    Ha, Young-Cheol
    RENEWABLE ENERGY, 2012, 42 : 4 - 10
  • [5] Improved extreme wind speed estimation for wind engineering applications
    Lombardo, Franklin T.
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2012, 104 : 278 - 284
  • [6] Nonparametric estimation of extreme conditional quantiles
    Beirlant, J
    De Wet, T
    Goegebeur, Y
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2004, 74 (08) : 567 - 580
  • [7] Extreme quantiles estimation for actuarial applications
    Delafosse, E
    Guillou, A
    COMPTES RENDUS MATHEMATIQUE, 2004, 339 (04) : 287 - 292
  • [8] On the estimation of extreme directional multivariate quantiles
    Torres, Raul
    Di Bernardino, Elena
    Laniado, Henry
    Lillo, Rosa E.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (22) : 5504 - 5534
  • [9] A FOLDING METHOD FOR EXTREME QUANTILES ESTIMATION
    Guillou, Armelle
    Naveau, Philippe
    You, Alexandre
    REVSTAT-STATISTICAL JOURNAL, 2010, 8 (01) : 21 - 35
  • [10] THE ESTIMATION OF EXTREME QUANTILES IN LOGIT BIOASSAY
    MCLEISH, D
    TOSH, D
    BIOMETRIKA, 1983, 70 (03) : 625 - 632