Lovastatin-induced up-regulation of the BH3-only protein, Bim, and cell death in glioblastoma cells

被引:65
作者
Jiang, ZH
Zheng, X
Lytle, RA
Higashikubo, R
Rich, KM
机构
[1] Washington Univ, Sch Med, Dept Neurol Surg, St Louis, MO 63110 USA
[2] Washington Univ, Sch Med, Dept Radiat Oncol, St Louis, MO 63110 USA
[3] Washington Univ, Sch Med, Dept Anat & Neurobiol, St Louis, MO 63110 USA
关键词
apoptosis; BH3-only protein; Bcl-2; Bcl-xL; geranylgeranylation; 3-hydroxy-3-methylglutaryl co-enzyme A synthetase inhibitor;
D O I
10.1111/j.1471-4159.2004.02319.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The mechanism of lovastatin-induced cell death was examined in three established human glioblastoma cell lines; U87, U251, and U138. Changes in potential modifiers of apoptosis, including Bcl-2 family proteins and MAP kinase targets after such lovastatin treatment, were evaluated. Lovastatin (5 muM) treatment causes extensive cell death in two of the cell lines, U87 and U251; but only minimal in a third, U138. Lovastatin-induced death occurs in correlation with significantly increased levels of the BH3-only protein, Bim. The up-regulation of Bim levels was directly associated with an increased incidence of apoptosis. Lovastatin treatment in U87 cells results in activation of targets of three major mitogen-activating protein kinase cascades including Erk1/2, JNK and p38. Changes in levels of Bim, as well as increase phosphorylation of Erk1/2, c-jun, and p38 are all prevented by co-incubation of lovastatin and the isoprenylation metabolite, geranylgeranyl pyrophosphate. Inhibition of the MAP kinase pathways failed to block the increased expression of Bim expression or cell death. Further elucidation of the mechanisms of lovastatin-induced up-regulation of Bim and apoptosis in glioblastoma cells are important in determining a potential role for lovastatin as a chemotherapy agent.
引用
收藏
页码:168 / 178
页数:11
相关论文
共 28 条
[1]  
Agarwal B, 1999, CLIN CANCER RES, V5, P2223
[2]   Proapoptotic Bcl-2 relative bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity [J].
Bouillet, P ;
Metcalf, D ;
Huang, DCS ;
Tarlinton, DM ;
Kay, TWH ;
Köntgen, F ;
Adams, JM ;
Strasser, A .
SCIENCE, 1999, 286 (5445) :1735-1738
[3]   A CONSERVED DOMAIN IN BAK, DISTINCT FROM BH1 AND BH2, MEDIATES CELL-DEATH AND PROTEIN-BINDING FUNCTIONS [J].
CHITTENDEN, T ;
FLEMINGTON, C ;
HOUGHTON, AB ;
EBB, RG ;
GALLO, GJ ;
ELANGOVAN, B ;
CHINNADURAI, G ;
LUTZ, RJ .
EMBO JOURNAL, 1995, 14 (22) :5589-5596
[4]   The C-elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9 [J].
Conradt, B ;
Horvitz, HR .
CELL, 1998, 93 (04) :519-529
[5]   ALTERED GENE-EXPRESSION IN NEURONS DURING PROGRAMMED CELL-DEATH - IDENTIFICATION OF C-JUN AS NECESSARY FOR NEURONAL APOPTOSIS [J].
ESTUS, S ;
ZAKS, WJ ;
FREEMAN, RS ;
GRUDA, M ;
BRAVO, R ;
JOHNSON, EM .
JOURNAL OF CELL BIOLOGY, 1994, 127 (06) :1717-1727
[6]  
Feleszko W, 2000, CLIN CANCER RES, V6, P2044
[7]   Rho GTPases and the actin cytoskeleton [J].
Hall, A .
SCIENCE, 1998, 279 (5350) :509-514
[8]   A C-JUN DOMINANT-NEGATIVE MUTANT PROTECTS SYMPATHETIC NEURONS AGAINST PROGRAMMED CELL-DEATH [J].
HAM, J ;
BABIJ, C ;
WHITFIELD, J ;
PFARR, CM ;
LALLEMAND, D ;
YANIV, M ;
RUBIN, LL .
NEURON, 1995, 14 (05) :927-939
[9]  
Harris CA, 2001, J BIOL CHEM, V276, P37754
[10]  
Holstein SA, 2001, MOL CANCER THER, V1, P141