Mechanistic Target of Rapamycin Signaling Activation Antagonizes Autophagy To Facilitate Zika Virus Replication

被引:28
作者
Sahoo, Bikash R. [1 ,2 ]
Pattnaik, Aryamav [1 ,2 ]
Annamalai, Arun S. [1 ,2 ]
Franco, Rodrigo [1 ,2 ,3 ]
Pattnaik, Asit K. [1 ,2 ]
机构
[1] Univ Nebraska, Sch Vet Med & Biomed Sci, Lincoln, NE 68588 USA
[2] Univ Nebraska, Nebraska Ctr Virol, Lincoln, NE 68588 USA
[3] Univ Nebraska, Redox Biol Ctr, Lincoln, NE 68588 USA
关键词
Zika virus; mTOR; autophagy; Rictor; Raptor; ULK1; rapamycin; Torin1; MAMMALIAN TARGET; PROTEIN-KINASE; MTOR; PHOSPHORYLATION; INFECTION; RICTOR; GROWTH; BRAIN; INHIBITOR; INDUCTION;
D O I
10.1128/JVI.01575-20
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Zika virus (ZIKV), a mosquito-transmitted flavivirus, is linked to microcephaly and other neurological defects in neonates and Guillain-Barre syndrome in adults. The molecular mechanisms regulating ZIKV infection and pathogenic outcomes are incompletely understood. Signaling by the mechanistic (mammalian) target of rapamycin (mTOR) kinase is important for cell survival and proliferation, and viruses are known to hijack this pathway for their replication. Here, we show that in human neuronal precursors and glial cells in culture, ZIKV infection activates both mTOR complex 1 (mTORC1) and mTORC2. Inhibition of mTOR kinase by Torin1 or rapamycin results in reduction in ZIKV protein expression and progeny production. Depletion of Raptor, the defining subunit of mTORC1, by small interfering RNA (siRNA) negatively affects ZIKV protein expression and viral replication. Although depletion of Rictor, the unique subunit of mTORC2, or the mTOR kinase itself also inhibits the viral processes, the extent of inhibition is less pronounced. Autophagy is transiently induced early by ZIKV infection, and impairment of autophagosome elongation by the class III phosphatidylinositol 3-kinase (PI3K) inhibitor 3-methyladenine (3-MA) enhances viral protein accumulation and progeny production. mTOR phosphorylates and inactivates ULK1 (S757) at later stages of ZIKV infection, suggesting a link between autophagy inhibition and mTOR activation by ZIKV. Accordingly, inhibition of ULK1 (by MRT68921) or autophagy (by 3-MA) reversed the effects of mTOR inhibition, leading to increased levels of ZIKV protein expression and progeny production. Our results demonstrate that ZIKV replication requires the activation of both mTORC1 and mTORC2, which negatively regulates autophagy to facilitate ZIKV replication. IMPORTANCE The re-emergence of Zika virus (ZIKV) and its association with neurological complications necessitates studies on the molecular mechanisms that regulate ZIKV pathogenesis. The mTOR signaling cascade is tightly regulated and central to normal neuronal development and survival. Disruption of mTOR signaling can result in neurological abnormalities. In the studies reported here, we demonstrate for the first time that ZIKV infection results in activation of both mTORC1 and mTORC2 to promote virus replication. Although autophagy is activated early in infection to counter virus replication, it is subsequently suppressed by mTOR. These results reveal critical roles of mTOR signaling and autophagy in ZIKV infection and point to a possible mechanism underlying ZIKV-induced pathogenesis. Elucidating the role of mTOR signaling in ZIKV infection will provide insights into the mechanisms of ZIKV-induced neurological complications and potential targets for therapeutic approaches.
引用
收藏
页数:17
相关论文
共 89 条
[1]   Differential and convergent utilization of autophagy components by positive-strand RNA viruses [J].
Abernathy, Emma ;
Mateo, Roberto ;
Majzoub, Karim ;
van Buuren, Nick ;
Bird, Sara W. ;
Carette, Jan E. ;
Kirkegaard, Karla .
PLOS BIOLOGY, 2019, 17 (01)
[2]  
Annamalai AS, 2017, J VIROL, V91, DOI [10.1128/JVI.01348-17, 10.1128/jvi.01348-17]
[3]  
[Anonymous], 2013, FIELDS VIROLOGY
[4]   West Nile virus growth is independent of autophagy activation [J].
Beatman, Erica ;
Oyer, Ryan ;
Shives, Katherine D. ;
Hedman, Karla ;
Brault, Aaron C. ;
Tyler, Kenneth L. ;
Beckham, J. David .
VIROLOGY, 2012, 433 (01) :262-272
[5]  
Besnard M, 2014, EUROSURVEILLANCE, V19
[6]   The Tat protein of human immunodeficiency virus type 1 is a substrate and inhibitor of the interferon-induced, virally activated protein kinase, PKR [J].
Brand, SR ;
Kobayashi, R ;
Mathews, MB .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (13) :8388-8395
[7]   The TORrid affairs of viruses: effects of mammalian DNA viruses on the PI3K-Akt-mTOR signalling pathway [J].
Buchkovich, Nicholas J. ;
Yu, Yongjun ;
Zampieri, Carisa A. ;
Alwine, James C. .
NATURE REVIEWS MICROBIOLOGY, 2008, 6 (04) :265-275
[8]   Inhibition of autophagy limits vertical transmission of Zika virus in pregnant mice [J].
Cao, Bin ;
Parnell, Lindsay A. ;
Diamond, Michael S. ;
Mysorekar, Indira U. .
JOURNAL OF EXPERIMENTAL MEDICINE, 2017, 214 (08) :2303-2313
[9]   Single-virus tracking approach to reveal the interaction of Dengue virus with autophagy during the early stage of infection [J].
Chu, Li-Wei ;
Huang, Yi-Lung ;
Lee, Jin-Hui ;
Huang, Long-Ying ;
Chen, Wei-Jun ;
Lin, Ya-Hsuan ;
Chen, Jyun-Yu ;
Xiang, Rui ;
Lee, Chau-Hwang ;
Ping, Yueh-Hsin .
JOURNAL OF BIOMEDICAL OPTICS, 2014, 19 (01)
[10]   The Changing Role of mTOR Kinase in the Maintenance of Protein Synthesis during Human Cytomegalovirus Infection [J].
Clippinger, Amy J. ;
Maguire, Tobi G. ;
Alwine, James C. .
JOURNAL OF VIROLOGY, 2011, 85 (08) :3930-3939