Asymptotic stability of continuum sets of periodic solutions to systems with hysteresis

被引:14
作者
Brokate, M [1 ]
Pokrovskii, A
Rachinskii, D
机构
[1] Natl Univ Ireland Univ Coll Cork, Dept Appl Math, Cork, Ireland
[2] Tech Univ Munich, Zentrum Math, D-85747 Munich, Germany
基金
俄罗斯基础研究基金会;
关键词
hysteresis perturbations of ODE; preisach hysteresis nonlinearity; periodic solutions; stability;
D O I
10.1016/j.jmaa.2006.02.060
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider hysteresis perturbations of a system of ODEs which possesses an asymptotically stable periodic solution z(*). Where the oscillation of an appropriate projection of this periodic solution is smaller than some threshold number defined by the hysteresis nonlinearity, it is shown that the perturbed system has a continuum of periodic solutions with a rather simple structure in a vicinity of z(*). The main result is a theorem on the stability of this continuum. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:94 / 109
页数:16
相关论文
共 14 条
[1]  
[Anonymous], 1994, APPROXIMATION PROCED
[2]  
[Anonymous], 1996, HYSTERESIS CONVEXITY
[3]   Asymptotically stable oscillations in systems with hysteresis nonlinearities [J].
Brokate, M ;
Pokrovskii, AV .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 150 (01) :98-123
[4]  
Brokate M, 2000, Z ANAL ANWEND, V19, P469
[5]  
Brokate M., 1996, Hysteresis and phase transitions, DOI 10.1007/978-1-4612-4048-8
[6]  
Hale J.K., 1977, Theory of functional differential equations, DOI 10.1007/978-1-4612-9892-2
[7]  
Krasnosel'ski MA., 1989, Systems with Hysteresis, DOI [10.1007/978-3-642-61302-9, DOI 10.1007/978-3-642-61302-9]
[8]   On a bifurcation governed by hysteresis nonlinearity [J].
Krasnosel'skii, A ;
Rachinskii, D .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2002, 9 (01) :93-115
[9]  
Krasnosel'skii AM, 2001, DOKL MATH, V63, P339
[10]  
Krasnoselskii M. A., 1984, GEOMETRICAL METHODS