Design sensitivity analysis extended to perturbation treatment in problems of uncertain structural system

被引:4
作者
Lee, BW [1 ]
Lim, OK [1 ]
机构
[1] PUSAN NATL UNIV,DEPT MECH ENGN,PUSAN 669735,SOUTH KOREA
关键词
D O I
10.1016/S0045-7949(96)00238-6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents an approach for extension of sensitivity methods to include the structural uncertainty with the random parameters. The formulation is based on the perturbation method. A method of direct differentiation for calculating sensitivity coefficients in regard to the governing equation, the first-order perturbed equation and the second-order perturbed equation, is derived. The numerical results are specifically noted, where the stiffness parameter and external load are treated as random variables. Copyright (C) 1996 Elsevier Science Ltd.
引用
收藏
页码:757 / 762
页数:6
相关论文
共 8 条
[1]  
BANICHUK NK, 1984, NEW DIRECTIONS OPTIM, P231
[2]  
Benaroya H., 1988, Apply Mesh Rev, V41, P201
[3]   EIGENVALUE PROBLEM FOR STRUCTURAL SYSTEMS WITH STATISTICAL PROPERTIES [J].
COLLINS, JD ;
THOMSON, WT .
AIAA JOURNAL, 1969, 7 (04) :642-&
[4]   THE STOCHASTIC FINITE-ELEMENT METHOD [J].
CONTRERAS, H .
COMPUTERS & STRUCTURES, 1980, 12 (03) :341-348
[5]  
HAFTKA RT, 1990, ELEMENTS STRUCTURAL, P228
[6]  
HAUG EJ, 1986, DESIGN SENSITIVITY A, P28
[7]  
HISADA T, 1981, 3RD P INT C STRUCT S, P395
[8]   RANDOM-FIELDS AND STOCHASTIC FINITE-ELEMENTS [J].
VANMARCKE, E ;
SHINOZUKA, M ;
NAKAGIRI, S ;
SCHUELLER, GI ;
GRIGORIU, M .
STRUCTURAL SAFETY, 1986, 3 (3-4) :143-166