Frames, Riesz systems and multiresolution analysis in Hilbert spaces

被引:1
作者
van Eijndhoven, SJL
Oonincx, PJ
机构
[1] Eindhoven Univ Technol, NL-5600 MB Eindhoven, Netherlands
[2] CWI, NL-1090 GB Amsterdam, Netherlands
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 1999年 / 10卷 / 03期
关键词
D O I
10.1016/S0019-3577(99)80029-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The concept of multiresolution analysis (MRA) is introduced for arbitrary separable Hilbert spaces H. It is put in the general terms of unitary operators U-1 and U-2.1,..., U-2,U-d, d is an element of Z and a generating element phi. Each MRA yields a system V = {(U1U2.1l1)-U-k... U(2,d)(ld)psi(n)\n = 0,..,N - 1; k is an element of Z, l is an element of Z(d)}, where the psi(n) are related to phi. Necessary and sufficient conditions on U-1, U-2,U-1,..., U-2,U-d, phi and psi(n) are given, by means of properties of matrix-valued functions on the unit circle, such that V is a Riesz system or Riesz basis in H.
引用
收藏
页码:369 / 382
页数:14
相关论文
共 50 条
[21]   Soft Frames in Soft Hilbert Spaces [J].
Ferrer, Osmin ;
Sierra, Arley ;
Sanabria, Jose .
MATHEMATICS, 2021, 9 (18)
[22]   On the Sum of Generalized Frames in Hilbert Spaces [J].
Abtahi, F. ;
Kamali, Z. ;
Keyshams, Z. .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (05)
[23]   Relay fusion frames for Hilbert spaces [J].
Guoqing Hong ;
Pengtong Li .
Journal of Inequalities and Applications, 2019
[24]   Generalized frames for operators in Hilbert spaces [J].
Asgari, Mohammad Sadegh ;
Rahimi, Hamidreza .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2014, 17 (02)
[25]   On the Sum of Generalized Frames in Hilbert Spaces [J].
F. Abtahi ;
Z. Kamali ;
Z. Keyshams .
Mediterranean Journal of Mathematics, 2021, 18
[26]   On Weaving Fusion Frames for Hilbert Spaces [J].
Deepshikha ;
Garg, Saakshi ;
Vashisht, Lalit K. ;
Verma, Geetika .
2017 INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2017, :381-385
[27]   Oblique dual frames in Hilbert spaces [J].
Javanshiri, Hossein ;
Fattahi, Abdolmajid ;
Sargazi, Mojtaba .
ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2020, 13 (06)
[28]   A Note on Frames in Quaternionic Hilbert Spaces [J].
Sharma, Sumit Kumar ;
Sharma, Raksha .
SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2025, 22 (01) :125-136
[29]   Woven Frames in Quaternionic Hilbert Spaces [J].
Sharma, S. K. ;
Sharma, Nitin ;
Poumai, Khole Timothy .
JOURNAL OF MATHEMATICS, 2021, 2021
[30]   Piecewise scalable frames in Hilbert spaces [J].
Khosravi, Amir ;
Farmani, Mohammad Reza .
INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2024, 22 (03)