Frames, Riesz systems and multiresolution analysis in Hilbert spaces

被引:1
|
作者
van Eijndhoven, SJL
Oonincx, PJ
机构
[1] Eindhoven Univ Technol, NL-5600 MB Eindhoven, Netherlands
[2] CWI, NL-1090 GB Amsterdam, Netherlands
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 1999年 / 10卷 / 03期
关键词
D O I
10.1016/S0019-3577(99)80029-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The concept of multiresolution analysis (MRA) is introduced for arbitrary separable Hilbert spaces H. It is put in the general terms of unitary operators U-1 and U-2.1,..., U-2,U-d, d is an element of Z and a generating element phi. Each MRA yields a system V = {(U1U2.1l1)-U-k... U(2,d)(ld)psi(n)\n = 0,..,N - 1; k is an element of Z, l is an element of Z(d)}, where the psi(n) are related to phi. Necessary and sufficient conditions on U-1, U-2,U-1,..., U-2,U-d, phi and psi(n) are given, by means of properties of matrix-valued functions on the unit circle, such that V is a Riesz system or Riesz basis in H.
引用
收藏
页码:369 / 382
页数:14
相关论文
共 50 条