HYPERBOLIC FOUR-MANIFOLDS WITH ONE CUSP

被引:26
作者
Kolpakov, Alexander [1 ]
Martelli, Bruno [2 ]
机构
[1] Vanderbilt Univ, Dept Math, Nashville, TN 37240 USA
[2] Dipartimento Matemat Tonelli, I-56127 Pisa, Italy
基金
瑞士国家科学基金会;
关键词
3-MANIFOLDS; NUMBER;
D O I
10.1007/s00039-013-0247-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce an algorithm which transforms every four-dimensional cubulation into a cusped finite-volume hyperbolic four-manifold. Combinatorially distinct cubulations give rise to topologically distinct manifolds. Using this algorithm we construct the first examples of finite-volume hyperbolic four-manifolds with one cusp. More generally, we show that the number of k-cusped hyperbolic four-manifolds with volume a (c) 1/2 V grows like C (V ln V) for any fixed k. As a corollary, we deduce that the 3-torus bounds geometrically a hyperbolic manifold.
引用
收藏
页码:1903 / 1933
页数:31
相关论文
共 19 条
  • [1] Anderson MT, 2006, J DIFFER GEOM, V73, P219
  • [2] Construction of Einstein metrics by generalized Dehn filling
    Bamler, Richard H.
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2012, 14 (03) : 887 - 909
  • [3] BOLLOBAS B, 1982, J LOND MATH SOC, V26, P201
  • [4] Counting hyperbolic manifolds
    Burger, M
    Gelander, T
    Lubotzky, A
    Mozes, S
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2002, 12 (06) : 1161 - 1173
  • [5] Triangulations of 3-manifolds, hyperbolic relative handlebodies, and Dehn filling
    Costantino, Francois
    Frigerio, Roberto
    Martelli, Bruno
    Petronio, Carlo
    [J]. COMMENTARII MATHEMATICI HELVETICI, 2007, 82 (04) : 903 - U1
  • [6] Culler M., SnapPy, a com-puter program for studying the geometry and topology of 3-manifolds
  • [7] EPSTEIN DBA, 1988, J DIFFER GEOM, V27, P67
  • [8] Frigerio R., ARXIV11072019
  • [9] Simplicial volume and fillings of hyperbolic manifolds
    Fujiwara, Koji
    Manning, Jason Fox
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2011, 11 (04): : 2237 - 2264
  • [10] GROMOV M, 1982, PUBL MATH-PARIS, P5