HYPERBOLIC FOUR-MANIFOLDS WITH ONE CUSP

被引:29
作者
Kolpakov, Alexander [1 ]
Martelli, Bruno [2 ]
机构
[1] Vanderbilt Univ, Dept Math, Nashville, TN 37240 USA
[2] Dipartimento Matemat Tonelli, I-56127 Pisa, Italy
基金
瑞士国家科学基金会;
关键词
3-MANIFOLDS; NUMBER;
D O I
10.1007/s00039-013-0247-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce an algorithm which transforms every four-dimensional cubulation into a cusped finite-volume hyperbolic four-manifold. Combinatorially distinct cubulations give rise to topologically distinct manifolds. Using this algorithm we construct the first examples of finite-volume hyperbolic four-manifolds with one cusp. More generally, we show that the number of k-cusped hyperbolic four-manifolds with volume a (c) 1/2 V grows like C (V ln V) for any fixed k. As a corollary, we deduce that the 3-torus bounds geometrically a hyperbolic manifold.
引用
收藏
页码:1903 / 1933
页数:31
相关论文
共 19 条
[1]  
Anderson MT, 2006, J DIFFER GEOM, V73, P219
[2]   Construction of Einstein metrics by generalized Dehn filling [J].
Bamler, Richard H. .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2012, 14 (03) :887-909
[3]  
BOLLOBAS B, 1982, J LOND MATH SOC, V26, P201
[4]   Counting hyperbolic manifolds [J].
Burger, M ;
Gelander, T ;
Lubotzky, A ;
Mozes, S .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2002, 12 (06) :1161-1173
[5]   Triangulations of 3-manifolds, hyperbolic relative handlebodies, and Dehn filling [J].
Costantino, Francois ;
Frigerio, Roberto ;
Martelli, Bruno ;
Petronio, Carlo .
COMMENTARII MATHEMATICI HELVETICI, 2007, 82 (04) :903-U1
[6]  
Culler M., SnapPy, a com-puter program for studying the geometry and topology of 3-manifolds
[7]  
EPSTEIN DBA, 1988, J DIFFER GEOM, V27, P67
[8]  
Frigerio R., ARXIV11072019
[9]   Simplicial volume and fillings of hyperbolic manifolds [J].
Fujiwara, Koji ;
Manning, Jason Fox .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2011, 11 (04) :2237-2264
[10]  
GROMOV M, 1982, PUBL MATH-PARIS, P5