Global, finite energy, weak solutions for the NLS with rough, time-dependent magnetic potentials

被引:7
作者
Antonelli, Paolo [1 ]
Michelangeli, Alessandro [2 ]
Scandone, Raffaele [2 ]
机构
[1] GSSI, Via Crispi 7, I-67100 Laquila, Italy
[2] SISSA Int Sch Adv Studies, Via Bonomea 265, I-34136 Trieste, Italy
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2018年 / 69卷 / 02期
关键词
Nonlinear Schr odinger equation; Magnetic potentials; Viscosity regularisation; Strichartz estimates; Weak solutions; NONLINEAR SCHRODINGER-EQUATION; CAUCHY-PROBLEM; WELL-POSEDNESS; STRICHARTZ; EXISTENCE; OPERATORS;
D O I
10.1007/s00033-018-0938-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of weak solutions in the space of energy for a class of nonlinear Schrodinger equations in the presence of a external, rough, time-dependent magnetic potential. Under our assumptions, it is not possible to study the problem by means of usual arguments like resolvent techniques or Fourier integral operators, for example. We use a parabolic regularisation, and we solve the approximating Cauchy problem. This is achieved by obtaining suitable smoothing estimates for the dissipative evolution. The total mass and energy bounds allow to extend the solution globally in time. We then infer sufficient compactness properties in order to produce a global-in-time finite energy weak solution to our original problem.
引用
收藏
页数:30
相关论文
共 43 条
[1]  
[Anonymous], 2013, INT SERIES NUMERICAL
[2]  
[Anonymous], 1998, An Introduction to Semilinear Evolution Equations
[3]   NONLINEAR MAXWELL-SCHRODINGER SYSTEM AND QUANTUM MAGNETO-HYDRODYNAMICS IN 3-D [J].
Antonelli, Paolo ;
D'Amico, Michele ;
Marcati, Pierangelo .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2017, 15 (02) :451-479
[4]   NONLINEAR SCHRODINGER EQUATION WITH TIME DEPENDENT POTENTIAL [J].
Carles, Remi .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2011, 9 (04) :937-964
[5]   THE CAUCHY-PROBLEM FOR THE CRITICAL NONLINEAR SCHRODINGER-EQUATION IN HS [J].
CAZENAVE, T ;
WEISSLER, FB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 14 (10) :807-836
[6]  
Cazenave T, 2003, Semilinear Schrodinger Equations
[7]   Maximal functions associated to filtrations [J].
Christ, M ;
Kiselev, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 179 (02) :409-425
[8]   Global well-posedness and scattering for the energy-critical nonlinear Schrodinger equation in R3 [J].
Colliander, J. ;
Keel, M. ;
Staffilani, G. ;
Takaoka, H. ;
Tao, T. .
ANNALS OF MATHEMATICS, 2008, 167 (03) :767-865
[9]   Strichartz and smoothing estimates for dispersive equations with magnetic potentials [J].
D'Ancona, Piero ;
Fanelli, Luca .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2008, 33 (06) :1082-1112
[10]   Endpoint Strichartz estimates for the magnetic Schrodinger equation [J].
D'Ancona, Piero ;
Fanelli, Luca ;
Vega, Luis ;
Visciglia, Nicola .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (10) :3227-3240