Thermal-stability optimization of Al2O3/Cu-Te based conductive-bridging random access memory systems

被引:25
作者
Goux, L. [1 ]
Opsomer, K. [1 ]
Franquet, A. [1 ]
Kar, G. [1 ]
Jossart, N. [1 ]
Richard, O. [1 ]
Wouters, D. J. [1 ,2 ]
Muller, R. [1 ]
Detavernier, C. [3 ]
Jurczak, M. [1 ]
Kittl, J. A. [1 ]
机构
[1] IMEC, B-3001 Louvain, Belgium
[2] Katholieke Univ Leuven, ESAT, B-3001 Louvain, Belgium
[3] Univ Ghent, B-9000 Ghent, Belgium
关键词
CBRAM; ECM; Cu-Te; Phase stability; Microstructure; Elemental diffusion; Buffer layer;
D O I
10.1016/j.tsf.2012.10.103
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this article we study the thermal stability of Al2O3\Cu-Te bi-layers up to temperatures used in the back-end-of-line integration process flow of conductive-bridging random-access-memory (CBRAM) technology. We investigate the temperature dependence of the microstructure and morphology of the CuxTe1-x layers for 0.2 < x < 0.8. For x > 0.7, phase separation is observed for as-deposited layers, resulting in rough morphology. Te-rich CuxTe1-x layers (x < 0.5) show large segregation processes during post-deposition annealing. Cu-Te phase restructuration phenomena are also observed during annealing in the range 0.5 < x < 0.7, however affecting little the roughness of the layer. On the other hand, both the Cu and Te elements diffuse into the Al2O3 layer already at moderate temperatures. These in-diffusion processes are efficiently reduced by inserting thin Ti layer at the Al2O3\Cu-Te interface. By means of secondary ion-mass spectroscopy analysis, we show that the thickness of the Ti layer allows obtaining either Cu-barrier (6 nm-thick Ti) or Cu-buffer (3 nm-thick Ti) properties. The optimized thermal stability achieved both by tuning the Cu-Te composition and by inserting 3 nm-thick Ti layer results in excellent and thermally stable CBRAM functionality after stack integration. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:29 / 33
页数:5
相关论文
共 7 条
[1]   A novel resistance memory with high scalability and nanosecond switching [J].
Aratani, K. ;
Ohba, K. ;
Mizuguchi, T. ;
Yasuda, S. ;
Shiimoto, T. ;
Tsushima, T. ;
Sone, T. ;
Endo, K. ;
Kouchiyama, A. ;
Sasaki, S. ;
Maesaka, A. ;
Yamada, N. ;
Narisawa, H. .
2007 IEEE INTERNATIONAL ELECTRON DEVICES MEETING, VOLS 1 AND 2, 2007, :783-786
[2]  
CABRAL C, 2007, APPL PHYS LETT, V90
[3]   STABILITY OF TE-CU AMORPHOUS ALLOY THIN-FILMS FOR OPTICAL-RECORDING [J].
CARCIA, PF ;
KALK, FD ;
BIERSTEDT, PE ;
FERRETTI, A ;
JONES, GA ;
SWARTZFAGER, DG .
JOURNAL OF APPLIED PHYSICS, 1988, 64 (04) :1671-1678
[4]   Influence of the Cu-Te composition and microstructure on the resistive switching of Cu-Te/Al2O3/Si cells [J].
Goux, L. ;
Opsomer, K. ;
Degraeve, R. ;
Muller, R. ;
Detavernier, C. ;
Wouters, D. J. ;
Jurczak, M. ;
Altimime, L. ;
Kittl, J. A. .
APPLIED PHYSICS LETTERS, 2011, 99 (05)
[5]   A Novel TiTe Buffered Cu-GeSbTe/SiO2 Electrochemical Resistive Memory (ReRAM) [J].
Lin, Yu-Yu ;
Lee, Feng-Ming ;
Chen, Yi-Chou ;
Chien, Wei-Chih ;
Yeh, Chiao-Wen ;
Hsieh, Kuang-Yeu ;
Lu, Chih-Yuan .
2010 SYMPOSIUM ON VLSI TECHNOLOGY, DIGEST OF TECHNICAL PAPERS, 2010, :91-+
[6]   Phase equilibria in the Cu-Te system [J].
Pashinkin, AS ;
Fedorov, VA .
INORGANIC MATERIALS, 2003, 39 (06) :539-554
[7]   Redox-Based Resistive Switching Memories - Nanoionic Mechanisms, Prospects, and Challenges [J].
Waser, Rainer ;
Dittmann, Regina ;
Staikov, Georgi ;
Szot, Kristof .
ADVANCED MATERIALS, 2009, 21 (25-26) :2632-+