On 3D Lagrangian Navier-Stokes α Model with a Class of Vorticity-Slip Boundary Conditions

被引:17
作者
Xiao, Yuelong [1 ]
Xin, Zhouping [2 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
[2] Chinese Univ Hong Kong, Inst Math Sci, Shatin, Hong Kong, Peoples R China
关键词
Navier-Stokes a model; Vorticity-slip boundary conditions; Vanishing a limit; CAMASSA-HOLM EQUATIONS; VANISHING VISCOSITY LIMIT; LANS-ALPHA; EULER; REGULARITY; FRICTION; FLOWS; FLUID; TERMS;
D O I
10.1007/s00021-012-0110-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns the 3-dimensional Lagrangian Navier-Stokes alpha model and the limiting Navier-Stokes system on smooth bounded domains with a class of vorticity-slip boundary conditions and the Navier-slip boundary conditions. It establishes the spectrum properties and regularity estimates of the associated Stokes operators, the local well-posedness of the strong solution and global existence of weak solutions for initial boundary value problems for such systems. Furthermore, the vanishing alpha limit to a weak solution of the corresponding initial-boundary value problem of the Navier-Stokes system is proved and a rate of convergence is shown for the strong solution.
引用
收藏
页码:215 / 247
页数:33
相关论文
共 48 条
[1]   Effective boundary conditions for laminar flows over periodic rough boundaries [J].
Achdou, Y ;
Pironneau, O ;
Valentin, F .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 147 (01) :187-218
[2]  
[Anonymous], 1997, INFINITE DIMENSIONAL
[3]  
[Anonymous], SPRINGER TRACTS NATU
[4]  
[Anonymous], 2009, Multiple Integrals in the Calculus of Variations
[5]   BOUNDARY CONDITIONS AT A NATURALLY PERMEABLE WALL [J].
BEAVERS, GS ;
JOSEPH, DD .
JOURNAL OF FLUID MECHANICS, 1967, 30 :197-&
[6]   On the Navier-Stokes equation with boundary conditions based on vorticity [J].
Bellout, H ;
Neustupa, J ;
Penel, P .
MATHEMATISCHE NACHRICHTEN, 2004, 269 :59-72
[7]   ON A ν-CONTINUOUS FAMILY OF STRONG SOLUTIONS TO THE EULER OR NAVIER-STOKES EQUATIONS WITH THE NAVIER-TYPE BOUNDARY CONDITION [J].
Bellout, Hamid ;
Neustupa, Jiri ;
Penel, Patrick .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 27 (04) :1353-1373
[8]  
BOURGUIGNON J. P., 1931, J. Funct. Anal., V15, P341, DOI [10.1016/0022-1236(74)90027-5, DOI 10.1016/0022-1236(74)90027-5]
[9]   The second grade fluid and averaged Euler equations with Navier-slip boundary conditions [J].
Busuioc, AV ;
Ratiu, TS .
NONLINEARITY, 2003, 16 (03) :1119-1149
[10]   Vector calculus and the topology of domains in 3-space [J].
Cantarella, J ;
DeTurck, D ;
Gluck, H .
AMERICAN MATHEMATICAL MONTHLY, 2002, 109 (05) :409-442