PARTIAL CHARACTERIZATION AND IMMOBILIZATION OF CARBOXYMETHYLCELLULASE FROM Aspergillus niger PRODUCED BY SOLID-STATE FERMENTATION

被引:6
作者
Junqueira, L. L. [1 ]
de Brito, A. R. [2 ]
Franco, M. [3 ]
de Assis, S. A. [1 ]
机构
[1] State Univ Feira de Santana UEFS, Dept Hlth, Lab Enzymol, BR-44036900 Feira De Santana, BA, Brazil
[2] State Univ Southwest Bahia UESB, Dept Exact & Nat, Postgrad Program Food Engn, BR-45700000 Itapetinga, BA, Brazil
[3] State Univ Santa Cruz UESC, Dept Exact Sci & Technol, BR-45662900 Ilheus, BA, Brazil
来源
REVISTA MEXICANA DE INGENIERIA QUIMICA | 2019年 / 18卷 / 01期
关键词
solid-state fermentation; carboxymethylcellulase; physical adsorption; immobilization; agribusiness residues; CELLULOLYTIC ENZYMES; CELLULASE PRODUCTION; RHIZOPUS SP; OPTIMIZATION; SUPPORT; LIPASES; PROTEIN; FUNGI;
D O I
10.24275/uam/izt/dcbi/revmexingquim/2019v18n1/Junqueira
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
The solid state fermentation is used in the bioprocess production of compounds of industrial applications. The objective of this paper is to characterize and immobilize carboxymethylcellulase enzymes produced by solid-state fermentation of the processing food wastes of acerola (Malpighia glabra), guava (Psidium guajava), cassava (Manihot esculenta), and passion fruit (Passillora edulis) using the Aspergillus niger. Enzyme activities were determined at different temperatures (40-90 degrees C) and pH (4.0-8.0). The enzymes were immobilized by adsorption onto silica gel and celite 545 supports. One could observe that the optimal carboxymethylcellulases temperatures of the crude enzymatic extracts from A. niger using acerola, guava, cassava and passion fruit residues ranged from 40-60 degrees C and that the optimal pH varied between 5.0-6.0. One it was found that the carboxymethylcellulases in these extracts presented high immobilization yields (85%, 93%, 46%, 34%) on silica gel and (91%, 87%, 100%, 38%) celite, respectively. The results are promising since it uses inexpensive solid supports and is a simple technique, thus providing optimal conditions for enzymatic recycling.
引用
收藏
页码:241 / 250
页数:10
相关论文
共 45 条
[1]  
Abubakar F., 2013, Int J Sci Res Manag, V1, P285
[2]  
Acharya PB, 2008, AFR J BIOTECHNOL, V7, P4147
[3]   Solid state fermentation of food waste mixtures for single cell protein, aroma volatiles and fat production [J].
Aggelopoulos, Theodoros ;
Katsieris, Konstantinos ;
Bekatorou, Argyro ;
Pandey, Ashok ;
Banat, Ibrahim M. ;
Koutinas, Athanasios A. .
FOOD CHEMISTRY, 2014, 145 :710-716
[4]  
Amaeze NJ., 2015, INT J APPL MICROBIOL, V3, P36, DOI DOI 10.3923/PJBS.2008.2382.2388
[5]  
Anita Singh Anita Singh, 2009, International Journal of Environmental Science and Engineering, V1, P23
[6]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[7]   Optimization of cellulases production by Trichoderma citrinoviride on marc of Artemisia annua and its application for bioconversion process [J].
Chandra, Mahesh ;
Kalra, Alok ;
Sharma, Pradeep K. ;
Kumar, Hirdesh ;
Sangwan, Rajinder S. .
BIOMASS & BIOENERGY, 2010, 34 (05) :805-811
[8]   Cellulase immobilized mesoporous silica nanocatalysts for efficient cellulose-to-glucose conversion [J].
Chang, Renee Han-Yi ;
Jang, Jen ;
Wu, Kevin C. -W. .
GREEN CHEMISTRY, 2011, 13 (10) :2844-2850
[9]   Synthetic applications of immobilized lipases in polymers [J].
Dalla-Vecchia, R ;
Nascimento, MD ;
Soldi, V .
QUIMICA NOVA, 2004, 27 (04) :623-630
[10]   Enzyme immobilization: an overview on techniques and support materials [J].
Datta, Sumitra ;
Christena, L. Rene ;
Rajaram, Yamuna Rani Sriramulu .
3 BIOTECH, 2013, 3 (01) :1-9