Modelling and control of multi-energy systems: An irreversible port-Hamiltonian approach

被引:31
|
作者
Ramirez, Hector [1 ]
Maschke, Bernhard [2 ]
Sbarbaro, Daniel [3 ]
机构
[1] Univ Franche Comte, FEMTO ST UMR CNRS 6174, Dept Automat & Syst Micromecatron, F-25030 Besancon, France
[2] Univ Lyon 1, Lab Automat & Genie Proc CNRS UMR 5007, F-69622 Villeurbanne, France
[3] Univ Concepcion, DIE, Biobio, Chile
关键词
Irreversible thermodynamics; Port-Hamiltonian system; Control; Multi-energy systems; PASSIVITY-BASED CONTROL; INTERCONNECTION; DYNAMICS; FORMULATION;
D O I
10.1016/j.ejcon.2013.09.009
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In recent work a class of quasi port Hamiltonian system expressing the first and second principle of thermodynamics as a structural property has been defined: Irreversible port-Hamiltonian system. These systems are very much like port-Hamiltonian systems but differ in that their structure matrices are modulated by a non-linear function that precisely expresses the irreversibility of the system. In a first instance irreversible port-Hamiltonian systems are extended to encompass coupled mechanical and thermodynamical systems, leading to the definition of reversible-irreversible port Hamiltonian systems. In a second instance, the formalism is used to suggest a class of passivity based controllers for thermodynamic systems based on interconnection and Casimir functions. However, the extension of the Casimir method to irreversible port-Hamiltonian systems is not so straightforward due to the "interconnection obstacle". The heat exchanger, a gas-piston system and the non-isothermal CSTR are used to illustrate the formalism. (C) 2013 European Control Association. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:513 / 520
页数:8
相关论文
共 50 条
  • [1] On the interconnection of irreversible port-Hamiltonian systems
    Ramirez, Hector
    Le Gorrec, Yann
    IFAC PAPERSONLINE, 2023, 56 (01): : 114 - 119
  • [2] An Overview on Irreversible Port-Hamiltonian Systems
    Ramirez, Hector
    Le Gorrec, Yann
    ENTROPY, 2022, 24 (10)
  • [3] Distributed port-Hamiltonian modelling for irreversible processes
    Zhou, W.
    Hamroun, B.
    Couenne, F.
    Le Gorrec, Y.
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2017, 23 (01) : 3 - 22
  • [4] On the passivity based control of irreversible processes: A port-Hamiltonian approach
    Ramirez, Hector
    Le Gorrec, Yann
    Maschke, Bernhard
    Couenne, Francoise
    AUTOMATICA, 2016, 64 : 105 - 111
  • [5] Boundary controlled irreversible port-Hamiltonian systems
    Ramirez, Hector
    Le Gorrec, Yann
    Maschke, Bernhard
    CHEMICAL ENGINEERING SCIENCE, 2022, 248
  • [6] On the Generating Functions of Irreversible port-Hamiltonian Systems
    Kirchhoff, Jonas
    Maschke, Bernhard
    IFAC PAPERSONLINE, 2023, 56 (02): : 10447 - 10452
  • [7] Multi-valued control of port-Hamiltonian systems
    Castaños F.
    RIAI - Revista Iberoamericana de Automatica e Informatica Industrial, 2022, 19 (04): : 419 - 429
  • [8] Multi-valued control of port-Hamiltonian systems
    Castanos, Fernando
    REVISTA IBEROAMERICANA DE AUTOMATICA E INFORMATICA INDUSTRIAL, 2022, 19 (04): : 419 - 429
  • [9] Neural Energy Casimir Control for Port-Hamiltonian Systems
    Xu, Liang
    Zakwan, Muhammad
    Ferrari-Trecate, Giancarlo
    2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 4053 - 4058
  • [10] Control of port-Hamiltonian systems with minimal energy supply *
    Schaller, Manuel
    Philipp, Friedrich
    Faulwasser, Timm
    Worthmann, Karl
    Maschke, Bernhard
    EUROPEAN JOURNAL OF CONTROL, 2021, 62 : 33 - 40