Active Disturbance Rejection Control for Synchronization of Different Fractional-Order Chaotic Systems

被引:0
作者
Gao, Zhe [1 ]
Liao, Xiaozhong [2 ]
机构
[1] Liaoning Univ, Coll Light Ind, Shenyang 110036, Liaoning Provin, Peoples R China
[2] Beijing Inst Technol, Sch Automat, Key Lab Intelligent Control & Decis Complex Syst, Beijing 100081, Peoples R China
来源
2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA) | 2014年
关键词
Fractional-order systems; Chaotic systems; Synchronization; Active disturbance rejection control;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates the fractional-order active disturbance rejection control for the synchronization of two different fractional-order chaotic systems. By the fractional-order extended state observers, the nonlinear dynamics in the synchronization error equations for each subsystems are estimated in real time. Compensating the nonlinear estimations into controllers, the active disturbance rejection controllers are designed to achieve the synchronization. Finally, two examples of synchronization issues on different fractional-order chaotic systems are provided to verify that the fractional-order ADRC is irrelevant with the nonlinear dynamics in the fractionalorder chaotic systems. The proposed controllers can achieve the synchronization and estimate the nonlinear dynamics effectively for different fractional-order chaotic systems.
引用
收藏
页码:2699 / 2704
页数:6
相关论文
共 50 条
[21]   High-order sliding mode-based robust active disturbance rejection control for uncertain fractional-order nonlinear systems [J].
Alouane, Sofiane ;
Djeghali, Nadia ;
Bettayeb, Maamar ;
Hamoudi, Ahcene .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2025,
[22]   Synchronization of Chaotic Fractional-order Systems via Fractional-Order Adaptive Controller [J].
Fayazi, Ali .
EMERGING SYSTEMS FOR MATERIALS, MECHANICS AND MANUFACTURING, 2012, 109 :333-339
[23]   Tracking Control for Fractional-order Chaotic Systems [J].
Zhou, Ping ;
Ding, Rui .
INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2010, 11 (11) :973-977
[24]   Predictive control of fractional-order chaotic systems [J].
Zheng, Yongai ;
Ji, Zhilin .
CHAOS SOLITONS & FRACTALS, 2016, 87 :307-313
[25]   Efficient Learning Control of Uncertain Fractional-Order Chaotic Systems With Disturbance [J].
Wang, Xia ;
Xu, Bin ;
Shi, Peng ;
Li, Shuai .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (01) :445-450
[26]   New Synchronization Criterion of Incommensurate Fractional-Order Chaotic Systems [J].
Chen, Liping ;
Xue, Min ;
Lopes, Antonio M. ;
Wu, Ranchao ;
Zhang, Xiaohua ;
Chen, Yangquan .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2024, 71 (01) :455-459
[27]   Nonlinear synchronization of fractional-order Lu and Qi chaotic systems [J].
Yadava, Vijay K. ;
Das, Subir ;
Cafagna, Donato .
23RD IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS CIRCUITS AND SYSTEMS (ICECS 2016), 2016, :596-599
[28]   Projective synchronization of two different fractional-order chaotic systems via adaptive fuzzy control [J].
A. Bouzeriba ;
A. Boulkroune ;
T. Bouden .
Neural Computing and Applications, 2016, 27 :1349-1360
[29]   Projective synchronization of two different fractional-order chaotic systems via adaptive fuzzy control [J].
Bouzeriba, A. ;
Boulkroune, A. ;
Bouden, T. .
NEURAL COMPUTING & APPLICATIONS, 2016, 27 (05) :1349-1360
[30]   Mittag-Leffler stability, control, and synchronization for chaotic generalized fractional-order systems [J].
Abed-Elhameed, Tarek M. ;
Aboelenen, Tarek .
ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2022, 2022 (01)