Local solvability and solution blowup for the Benjamin-Bona-Mahony-Burgers equation with a nonlocal boundary condition

被引:10
作者
Korpusov, M. O. [1 ]
Panin, A. A. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
blowup; local solvability; Benjamin-Bona-Mahony-Burgers equation;
D O I
10.1007/s11232-013-0047-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a model initial-boundary value problem for the Benjamin-Bona-Mahony-Burgers equation with initial conditions having a physical meaning. We prove the unique local solvability in the classical sense and obtain sufficient conditions for blowup and an estimate of the blowup time. To prove the blowup, we use the known test function method developed in papers by V. A. Galaktionov, E. L. Mitidieri, and S. I. Pohozaev. We note that this is one of the first results toward the blowup for the considered equation.
引用
收藏
页码:580 / 591
页数:12
相关论文
共 13 条
[2]  
Alshin A. B., 2011, De Gruyter Ser. Nonlinear Anal. Appl., V15
[3]  
[Anonymous], 1988, Appl. Anal., DOI 10.1080/00036818808839789
[4]  
[Anonymous], 2010, GRAD STUD MATH
[5]  
[Anonymous], 2006, Lecture Notes in Mathematics
[6]  
[Anonymous], 2003, PORT MATH
[7]   GLOBAL EXISTENCE FOR THE BENJAMIN-BONA-MAHONY EQUATION IN ARBITRARY DIMENSIONS [J].
AVRIN, J ;
GOLDSTEIN, JA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1985, 9 (08) :861-865
[8]   MODEL EQUATIONS FOR LONG WAVES IN NONLINEAR DISPERSIVE SYSTEMS [J].
BENJAMIN, TB ;
BONA, JL ;
MAHONY, JJ .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1972, 272 (1220) :47-+
[9]  
Biler P., 1992, DIFFERENTIAL INTEGRA, V5, P891, DOI 10.57262/die/1370955426
[10]   On global solutions and blow-up for Kuramoto-Sivashinsky-type models, and well-posed Burnett equations [J].
Galaktionov, V. A. ;
Mitidieri, E. ;
Pohozaev, S. I. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (08) :2930-2952