Mass accommodation at a high-velocity water liquid-vapor interface

被引:9
作者
Nie, J. [1 ]
Chandra, A. [2 ]
Liang, Z. [3 ]
Keblinski, P. [1 ]
机构
[1] Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA
[2] Rensselaer Polytech Inst, Dept Mech Aeronaut & Nucl Engn, Troy, NY 12180 USA
[3] Calif State Univ Fresno, Dept Mech Engn, Fresno, CA 93740 USA
关键词
MOLECULAR-DYNAMICS; CONDENSATION COEFFICIENT; HEAT-TRANSFER; SPRAY; SIMULATIONS; TRANSPORT;
D O I
10.1063/1.5091724
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We use molecular dynamics to determine the mass accommodation coefficient (MAC) of water vapor molecules colliding with a rapidly moving liquid vapor interface. This interface mimics those present in collapsing vapor bubbles that are characterized by large interfacial velocities. We find that at room temperature, the MAC is generally close to unity, and even with interfaces moving at 10 km/s velocity, it has a large value of 0.79. Using a simplified atomistic fluid model, we explore the consequences of vapor molecule interfacial collision rules on pressure, temperature, and density of a vapor subjected to an incoming high-velocity liquid-vapor interface. Published under license by AIP Publishing.
引用
收藏
页数:7
相关论文
共 32 条
[1]   Kinetic analysis of intensive evaporation (method of reverse balances) [J].
Avdeev, A. A. ;
Zudin, Yu. B. .
HIGH TEMPERATURE, 2012, 50 (04) :527-535
[2]   Evaporation-induced cavitation in nanofluidic channels [J].
Duan, Chuanhua ;
Karnik, Rohit ;
Lu, Ming-Chang ;
Majumdar, Arun .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (10) :3688-3693
[3]  
Hockney R. W., 1989, COMPUETR SIMULATION
[4]   Evaporation of freely suspended single droplets: experimental, theoretical and computational simulations [J].
Holyst, R. ;
Litniewski, M. ;
Jakubczyk, D. ;
Kolwas, K. ;
Kolwas, M. ;
Kowalski, K. ;
Migacz, S. ;
Palesa, S. ;
Zientara, M. .
REPORTS ON PROGRESS IN PHYSICS, 2013, 76 (03)
[5]   Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew [J].
Horn, HW ;
Swope, WC ;
Pitera, JW ;
Madura, JD ;
Dick, TJ ;
Hura, GL ;
Head-Gordon, T .
JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (20) :9665-9678
[6]   Effect of Nanostructures on the Meniscus Shape and Disjoining Pressure of Ultrathin Liquid Film [J].
Hu, Han ;
Weinberger, Christopher R. ;
Sun, Ying .
NANO LETTERS, 2014, 14 (12) :7131-7137
[7]   Mass Accommodation of Water: Bridging the Gap Between Molecular Dynamics Simulations and Kinetic Condensation Models [J].
Julin, Jan ;
Shiraiwa, Manabu ;
Miles, Rachael E. H. ;
Reid, Jonathan P. ;
Poschl, Ulrich ;
Riipinen, Ilona .
JOURNAL OF PHYSICAL CHEMISTRY A, 2013, 117 (02) :410-420
[8]   Evaluation of jet impingement, spray and microchannel chip cooling options for high heat flux removal [J].
Kandlikar, Satish G. ;
Bapat, Akhilesh V. .
HEAT TRANSFER ENGINEERING, 2007, 28 (11) :911-923
[9]   Spray cooling heat transfer: The state of the art [J].
Kim, Jurigho .
INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2007, 28 (04) :753-767
[10]  
Knudsen M., 1934, KINETIC THEORY GASES