Functional linear regression for functional response via sparse basis selection

被引:1
作者
Han, Kyunghee [1 ]
Shin, Hyejin [2 ]
机构
[1] Seoul Natl Univ, Dept Stat, Seoul 151747, South Korea
[2] Bell Labs, Seoul 121904, South Korea
基金
新加坡国家研究基金会;
关键词
Functional linear regression; Functional response; Basis selection; Penalized least squares; Group variable selection; Oracle property; NONCONCAVE PENALIZED LIKELIHOOD; VARIABLE SELECTION; ORACLE PROPERTIES; LONGITUDINAL DATA; ASYMPTOTICS; ESTIMATORS; MODELS; LASSO;
D O I
10.1016/j.jkss.2014.10.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study a sparse estimation in functional linear regression model for functional response where the bivariate regression coefficient function takes zero values in a certain region of domain, so it is generated by a sparse set of basis functions. From a variable selection perspective, we construct a sparse basis representation for the coefficient function using the penalized least squares method. The proposed method enables us to simultaneously estimate the regression parameters and select basis functions. For a given basis, we show that our approach consistently identifies true subset of basis functions and the resulting estimator has asymptotically the same properties as the oracle estimator derived from the true underlying model. Simulation studies and a real data application are provided to demonstrate a finite sample performance of the proposed method. (C) 2014 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:376 / 389
页数:14
相关论文
共 22 条
[1]   Functional linear regression with functional response: Application to prediction of electricity consumption [J].
Antoch, Jaromir ;
Prchal, Lubos ;
De Rosa, Maria Rosaria ;
Sarda, Pascal .
FUNCTIONAL AND OPERATORIAL STATISTICS, 2008, :23-+
[2]  
Arens S., 2012, 2012 UTAH OZONE STUD, P1
[3]   Variable selection via nonconcave penalized likelihood and its oracle properties [J].
Fan, JQ ;
Li, RZ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) :1348-1360
[4]   ON THE ASYMPTOTICS OF CONSTRAINED M-ESTIMATION [J].
GEYER, CJ .
ANNALS OF STATISTICS, 1994, 22 (04) :1993-2010
[5]   Methodology and convergence rates for functional linear regression [J].
Hall, Peter ;
Horowitz, Joel L. .
ANNALS OF STATISTICS, 2007, 35 (01) :70-91
[6]   FUNCTIONAL LINEAR REGRESSION THAT'S INTERPRETABLE [J].
James, Gareth M. ;
Wang, Jing ;
Zhu, Ji .
ANNALS OF STATISTICS, 2009, 37 (5A) :2083-2108
[7]  
Knight K, 2000, ANN STAT, V28, P1356
[8]   Sparse estimation in functional linear regression [J].
Lee, Eun Ryung ;
Park, Byeong U. .
JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 105 (01) :1-17
[9]  
Liu H., 2009, P 26 ANN INT C MACH, P649
[10]   A case of nighttime high ozone concentration over the greater Athens area [J].
Mavrakis, Anastasios ;
Flocas, Helena A. ;
Mavromatidis, Elias ;
Kallos, George ;
Theoharatos, George ;
Christides, Anastasios .
METEOROLOGISCHE ZEITSCHRIFT, 2010, 19 (01) :35-45