Overexpression of a heading Chinese cabbage ICE1 gene confers freezing tolerance in transgenic rice

被引:11
|
作者
Xiang, Dianjun [1 ]
Chai, Yongshan [2 ]
Man, Lili [1 ]
Sun, Yuyou [2 ]
Zhang, Taizhong [2 ]
Wei, Caiqiang [2 ]
Xie, Zhong [2 ]
Li, Hongliang [2 ]
Zhang, Weiwei [2 ]
Liu, Dan [2 ]
Cheng, Dujuan [2 ]
Wang, Xiaodong [2 ]
Liu, Chunguang [2 ]
机构
[1] Hei Long Jiang Agr Econ Vocat Coll, Mudanjiang 157041, Peoples R China
[2] Heilongjiang Acad Agr Sci, Mudanjiang Branch, Mudanjiang 157041, Peoples R China
关键词
Heading Chinese cabbage; BcICE1; CBF/DEEB1; Cold-responsive genes; Rice; Freezing tolerance; CIS-ACTING ELEMENT; LOW-TEMPERATURE; TRANSCRIPTION FACTOR; COLD-STRESS; SALT TOLERANCE; FUNCTIONAL-ANALYSIS; CHILLING STRESS; ABSCISIC-ACID; PLANT-TISSUES; OSDREB GENES;
D O I
10.1007/s11240-016-1080-8
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Low temperature stress operates the ICE1 -CBF cold-responsive signal pathway of plants, which leads to the overexpression of a series of genes to enhance freezing tolerance. In this study, a novel MYC-type ICE1-like gene, BcICE1, was isolated from heading Chinese cabbage (Brassica campestris ssp. Pekinensis Lour. Olsson), and its function in freezing tolerance was characterized in rice. The expression of BcICE1 gene was constitutive with higher transcriptional levels in stems and leaves than in roots. The low temperature, ABA and NaCl treatments could significantly up-regulate BcICE1 expression levels, but dehydration stress had less effect on its expression. Under low temperature stress, the rice lines overexpressing BcICE1 gene enhanced freezing tolerance according to higher survival rate, higher accumulation of soluble sugars and proline, a remarkable decline in electrolyte leakage rate and MDA levels, and higher chlorophyll content compared with non-transgenic plants. As downstream cold-regulated genes, the expression levels of OsDREB1B, OsTPP1, J013091D15 and J023041L05 were obviously up-regulated in rice overexpressing BcICE1 under low temperature stress, suggesting BcICE1 was dependent of a CBF/DREB1 cold-responsive pathway. In short, above data showed that BcICE1 had a positive effect on improving rice freezing tolerance, which most likely result from the up-regulation of OsDREB1B, OsTPP1, J013091D15 and J023041L05 expression levels by interaction with the BcICE1 gene under low temperature stress.
引用
收藏
页码:43 / 54
页数:12
相关论文
共 50 条
  • [41] Overexpression of a NF-YC transcription factor from bermudagrass confers tolerance to drought and salinity in transgenic rice
    Chen, Miao
    Zhao, Yujuan
    Zhuo, Chunliu
    Lu, Shaoyun
    Guo, Zhenfei
    PLANT BIOTECHNOLOGY JOURNAL, 2015, 13 (04) : 482 - 491
  • [42] OsSDIR1 overexpression greatly improves drought tolerance in transgenic rice
    Ting Gao
    Yaorong Wu
    Yiyue Zhang
    Lijing Liu
    Yuese Ning
    Dongjiang Wang
    Hongning Tong
    Shouyi Chen
    Chengcai Chu
    Qi Xie
    Plant Molecular Biology, 2011, 76 : 145 - 156
  • [43] OsSDIR1 overexpression greatly improves drought tolerance in transgenic rice
    Gao, Ting
    Wu, Yaorong
    Zhang, Yiyue
    Liu, Lijing
    Ning, Yuese
    Wang, Dongjiang
    Tong, Hongning
    Chen, Shouyi
    Chu, Chengcai
    Xie, Qi
    PLANT MOLECULAR BIOLOGY, 2011, 76 (1-2) : 145 - 156
  • [44] Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice
    Vydehi Kanneganti
    Aditya Kumar Gupta
    Plant Molecular Biology, 2008, 66 : 445 - 462
  • [45] Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice
    Kanneganti, Vydehi
    Gupta, Aditya Kumar
    PLANT MOLECULAR BIOLOGY, 2008, 66 (05) : 445 - 462
  • [46] Overexpression of a modified AM79 aroA gene in transgenic maize confers high tolerance to glyphosate
    REN Zhen-jing
    CAO Gao-yi
    ZHANG Yu-wen
    LIU Yan
    LIU Yun-jun
    Journal of Integrative Agriculture, 2015, 14 (03) : 414 - 422
  • [47] Overexpression of the wasabi defensin gene confers enhanced resistance to blast fungus (Magnaporthe grisea) in transgenic rice
    Kanzaki, H
    Nirasawa, S
    Saitoh, H
    Ito, M
    Nishihara, M
    Terauchi, R
    Nakamura, I
    THEORETICAL AND APPLIED GENETICS, 2002, 105 (6-7) : 809 - 814
  • [48] Overexpression of the wasabi defensin gene confers enhanced resistance to blast fungus (Magnaporthe grisea) in transgenic rice
    H. Kanzaki
    S. Nirasawa
    H. Saitoh
    M. Ito
    M. Nishihara
    R. Terauchi
    I. Nakamura
    Theoretical and Applied Genetics, 2002, 105 : 809 - 814
  • [49] Saussurea involucrata (Snow Lotus) ICE1 and ICE2 Orthologues Involved in Regulating Cold Stress Tolerance in Transgenic Arabidopsis
    Wu, Chia-Ling
    Lin, Lee-Fong
    Hsu, Hsiao-Chun
    Huang, Li-Fen
    Hsiao, Chung-Der
    Chou, Ming-Lun
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (19)
  • [50] Overexpression of an Apocynum venetum flavonols synthetase gene confers salinity stress tolerance to transgenic tobacco plants
    Wang, Meng
    Ren, Tingting
    Huang, Ruihuan
    Li, Yiqiang
    Zhang, Chengsheng
    Xu, Zongchang
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2021, 162 : 667 - 676