Hierarchical Transfer Convolutional Neural Networks for Image Classification

被引:0
|
作者
Dong, Xishuang [1 ]
Wu, Hsiang-Huang [1 ]
Yan, Yuzhong [1 ]
Qian, Lijun [1 ]
机构
[1] Prairie View A&M Univ, CREDIT, Prairie View, TX 77446 USA
来源
2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA) | 2019年
关键词
Convolutional Neural Networks; Transfer Deep Learning; Image Classification;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we address the issue of how to enhance the generalization performance of convolutional neural networks (CNN) in the early learning stage for image classification. This is motivated by real-time applications that require the generalization performance of CNN to be satisfactory within limited training time. In order to achieve this, a novel hierarchical transfer CNN framework is proposed. It consists of a group of shallow CNNs and a cloud CNN, where the shallow CNNs are trained firstly and then the first layers of the trained shallow CNNs are used to initialize the first layer of the cloud CNN. This method will boost the generalization performance of the cloud CNN significantly, especially during the early stage of training. Experiments using CIFAR-10 and ImageNet datasets are performed to examine the proposed method. Results demonstrate the improvement of testing accuracy is 12% on average and as much as 20% for the CIFAR-10 case while 5% testing accuracy improvement for the ImageNet case during the early stage of learning. 1l is also shown that universal improvements of testing accuracy are obtained across different settings of dropout and number of shallow CNNs.
引用
收藏
页码:2817 / 2825
页数:9
相关论文
共 50 条
  • [1] Hierarchical convolutional neural networks for fashion image classification
    Seo, Yian
    Shin, Kyung-shik
    EXPERT SYSTEMS WITH APPLICATIONS, 2019, 116 : 328 - 339
  • [2] A Novel Progressive Image Classification Method Based on Hierarchical Convolutional Neural Networks
    Li, Cheng
    Miao, Fei
    Gao, Gang
    ELECTRONICS, 2021, 10 (24)
  • [3] Balanced Medical Image Classification with Transfer Learning and Convolutional Neural Networks
    Benavente, David
    Gatica, Gustavo
    Gonzalez-Feliu, Jesus
    AXIOMS, 2022, 11 (03)
  • [4] Convolutional Neural Networks based Pornographic Image Classification
    Zhou, KaiLong
    Zhou, Li
    Geng, Zhen
    Zhang, Jing
    Li, Xiao Guang
    2016 IEEE SECOND INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM), 2016, : 206 - 209
  • [5] Dealing with Robustness of Convolutional Neural Networks for Image Classification
    Arcaini, Paolo
    Bombarda, Andrea
    Bonfanti, Silvia
    Gargantini, Angelo
    2020 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE TESTING (AITEST), 2020, : 7 - 14
  • [6] Design of Kernels in Convolutional Neural Networks for Image Classification
    Sun, Zhun
    Ozay, Mete
    Okatani, Takayuki
    COMPUTER VISION - ECCV 2016, PT VII, 2016, 9911 : 51 - 66
  • [7] Evolving Deep Convolutional Neural Networks for Image Classification
    Sun, Yanan
    Xue, Bing
    Zhang, Mengjie
    Yen, Gary G.
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2020, 24 (02) : 394 - 407
  • [8] Convolutional neural networks for hyperspectral image classification
    Yu, Shiqi
    Jia, Sen
    Xu, Chunyan
    NEUROCOMPUTING, 2017, 219 : 88 - 98
  • [9] Hyperspectral Image Classification with Convolutional Neural Networks
    Slavkovikj, Viktor
    Verstockt, Steven
    De Neve, Wesley
    Van Hoecke, Sofie
    Van de Walle, Rik
    MM'15: PROCEEDINGS OF THE 2015 ACM MULTIMEDIA CONFERENCE, 2015, : 1159 - 1162
  • [10] Image Classification Using Convolutional Neural Networks
    Filippov, S. A.
    AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS, 2024, 58 (SUPPL3) : S143 - S149