Exact solutions of the (2+1) dimensional Dirac equation in a constant magnetic field in the presence of a minimal length

被引:75
|
作者
Menculini, L. [1 ]
Panella, O. [2 ]
Roy, P. [3 ]
机构
[1] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy
[2] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy
[3] Indian Stat Inst, Phys & Appl Math Unit, Kolkata 700108, India
来源
PHYSICAL REVIEW D | 2013年 / 87卷 / 06期
关键词
UNCERTAINTY RELATION; DEFORMED SPACE; OSCILLATOR; ELECTRON; GRAVITY; PHYSICS; CPT;
D O I
10.1103/PhysRevD.87.065017
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the (2 + 1)-dimensional Dirac equation in a homogeneous magnetic field (relativistic Landau problem) within a minimal length or generalized uncertainty principle scenario. We derive exact solutions for a given explicit representation of the generalized uncertainty principle and provide expressions of the wave functions in the momentum representation. We find that in the minimal length case, the degeneracy of the states is modified, and that there are states that do not exist in the ordinary quantum mechanics limit (beta -> 0). We also discuss the massless case, which may find application in describing the behavior of charged fermions in new materials like graphene. DOI: 10.1103/PhysRevD.87.065017
引用
收藏
页数:10
相关论文
共 50 条
  • [31] A series of exact solutions for a new (2+1)-dimensional calogero KdV equation
    Bian, XJ
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2005, 44 (05) : 815 - 820
  • [32] EXPLICIT EXACT SOLUTIONS TO THE (2+1) DIMENSIONAL SINH-POISSON EQUATION
    Xie, Yuanxi
    Peng, Shiyu
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2010, 24 (17): : 3395 - 3409
  • [33] New exact solutions to the (2+1)-dimensional Broer-Kaup equation
    Zhu, Jiamin
    Ma, Zhengyi
    CHAOS SOLITONS & FRACTALS, 2007, 34 (02) : 476 - 481
  • [34] NEW EXACT SOLUTIONS FOR (2+1)-DIMENSIONAL KADOMTSEV-PETVIASHVILI EQUATION
    Qian, Li
    Sheng, Dong
    FOURTH INTERNATIONAL CONFERENCE ON COMPUTER AND ELECTRICAL ENGINEERING (ICCEE 2011), 2011, : 135 - 139
  • [35] Exact solutions of (2+1)-dimensional stochastic Broer-Kaup equation
    Dai, Chaoqing
    Chen, Junlang
    PHYSICS LETTERS A, 2009, 373 (14) : 1218 - 1225
  • [36] Integrability and exact solutions of the (2+1)-dimensional variable coefficient Ito equation
    Jingyi Chu
    Yaqing Liu
    Xin Chen
    Nonlinear Dynamics, 2024, 112 : 1307 - 1325
  • [37] Exact periodic solitary wave solutions for the (2+1)-dimensional Boussinesq equation
    Liu, Changfu
    Dai, Zhengde
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 367 (02) : 444 - 450
  • [38] Nonlocal symmetry and exact solutions of the (2+1)-dimensional breaking soliton equation
    Cheng, Wen-guang
    Li, Biao
    Chen, Yong
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 29 (1-3) : 198 - 207
  • [39] Exact solutions of a (2+1)-dimensional extended shallow water wave equation
    Yuan, Feng
    He, Jing-Song
    Cheng, Yi
    CHINESE PHYSICS B, 2019, 28 (10)
  • [40] Integrability and exact solutions of the (2+1)-dimensional variable coefficient Ito equation
    Chu, Jingyi
    Liu, Yaqing
    Chen, Xin
    NONLINEAR DYNAMICS, 2024, 112 (02) : 1307 - 1325