共 50 条
Exact solutions of the (2+1) dimensional Dirac equation in a constant magnetic field in the presence of a minimal length
被引:75
|作者:
Menculini, L.
[1
]
Panella, O.
[2
]
Roy, P.
[3
]
机构:
[1] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy
[2] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy
[3] Indian Stat Inst, Phys & Appl Math Unit, Kolkata 700108, India
来源:
PHYSICAL REVIEW D
|
2013年
/
87卷
/
06期
关键词:
UNCERTAINTY RELATION;
DEFORMED SPACE;
OSCILLATOR;
ELECTRON;
GRAVITY;
PHYSICS;
CPT;
D O I:
10.1103/PhysRevD.87.065017
中图分类号:
P1 [天文学];
学科分类号:
0704 ;
摘要:
We study the (2 + 1)-dimensional Dirac equation in a homogeneous magnetic field (relativistic Landau problem) within a minimal length or generalized uncertainty principle scenario. We derive exact solutions for a given explicit representation of the generalized uncertainty principle and provide expressions of the wave functions in the momentum representation. We find that in the minimal length case, the degeneracy of the states is modified, and that there are states that do not exist in the ordinary quantum mechanics limit (beta -> 0). We also discuss the massless case, which may find application in describing the behavior of charged fermions in new materials like graphene. DOI: 10.1103/PhysRevD.87.065017
引用
收藏
页数:10
相关论文