Connecting proteins with drug-like compounds: Open source drug discovery workflows with BindingDB and KNIME

被引:12
|
作者
Nicola, George [1 ]
Berthold, Michael R. [2 ]
Hedrick, Michael P. [3 ]
Gilson, Michael K. [1 ]
机构
[1] Univ Calif San Diego, Skaggs Sch Pharm & Pharmaceut Sci, La Jolla, CA 92093 USA
[2] Univ Konstanz, Dept Comp & Informat Sci, D-78457 Constance, Germany
[3] Sanford Burnham Prebys Med Discovery Inst, La Jolla, CA USA
来源
DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION | 2015年
基金
美国国家卫生研究院;
关键词
MAXIMUM COMMON SUBSTRUCTURE; NONSTEROIDAL ANTIINFLAMMATORY DRUGS; PHOSPHOLIPASE A(2); SMALL MOLECULES; DATABASE; CLOPERASTINE; SIMILARITY; PLATFORM; COUGH; CLASSIFICATION;
D O I
10.1093/database/bav087
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Today's large, public databases of protein-small molecule interaction data are creating important new opportunities for data mining and integration. At the same time, new graphical user interface-based workflow tools offer facile alternatives to custom scripting for informatics and data analysis. Here, we illustrate how the large protein-ligand database BindingDB may be incorporated into KNIME workflows as a step toward the integration of pharmacological data with broader biomolecular analyses. Thus, we describe a collection of KNIME workflows that access BindingDB data via RESTful webservices and, for more intensive queries, via a local distillation of the full BindingDB dataset. We focus in particular on the KNIME implementation of knowledge-based tools to generate informed hypotheses regarding protein targets of bioactive compounds, based on notions of chemical similarity. A number of variants of this basic approach are tested for seven existing drugs with relatively ill-defined therapeutic targets, leading to replication of some previously confirmed results and discovery of new, high-quality hits. Implications for future development are discussed.
引用
收藏
页数:22
相关论文
共 24 条
  • [1] Release of 50 new, drug-like compounds and their computational target predictions for open source anti-tubercular drug discovery
    Jose Rebollo-Lopez, Maria
    Lelievre, Joel
    Alvarez-Gomez, Daniel
    Castro-Pichel, Julia
    Martinez-Jimenez, Francisco
    Papadatos, George
    Kumar, Vinod
    Colmenarejo, Gonzalo
    Mugumbate, Grace
    Hurle, Mark
    Barroso, Vanessa
    Young, Rob J.
    Martinez-Hoyos, Maria
    Gonzalez del Rio, Ruben
    Bates, Robert H.
    Maria Lopez-Roman, Eva
    Mendoza-Losana, Alfonso
    Brown, James R.
    Alvarez-Ruiz, Emilio
    Marti-Renom, Marc A.
    Overington, John P.
    Cammack, Nicholas
    Ballell, Lluis
    Barros-Aguire, David
    PLOS ONE, 2015, 10 (12):
  • [2] Quantitative and qualitative prediction of corneal permeability for drug-like compounds
    Ghorbanzad'e, Mehdi
    Fatemi, Mohammad H.
    Karimpour, Masourneh
    Andersson, Patrik L.
    TALANTA, 2011, 85 (05) : 2686 - 2694
  • [3] Open Source Drug Discovery with Bioclipse
    Spjuth, Ola
    Carlsson, Lars
    Alvarsson, Jonathan
    Georgiev, Valentin
    Willighagen, Egon
    Eklund, Martin
    CURRENT TOPICS IN MEDICINAL CHEMISTRY, 2012, 12 (18) : 1980 - 1986
  • [4] Virtual screening and selection of drug-like compounds to block noggin interaction with bone morphogenetic proteins
    Ahmed, Shaila
    Metpally, Raghu Prasad Rao
    Sangadala, Sreedhara
    Reddy, Boojala Vijay B.
    JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2010, 28 (07) : 670 - 682
  • [5] Open Drug Discovery Toolkit (ODDT): a new open-source player in the drug discovery field
    Wojcikowski, Maciej
    Zielenkiewicz, Piotr
    Siedlecki, Pawel
    JOURNAL OF CHEMINFORMATICS, 2015, 7
  • [6] DIAGNOSTIC OF A QSPR MODEL: AQUEOUS SOLUBILITY OF DRUG-LIKE COMPOUNDS
    Bolboaca, Sorana D.
    Jaentschi, Lorentz
    STUDIA UNIVERSITATIS BABES-BOLYAI CHEMIA, 2010, 55 (04): : 69 - 76
  • [7] The importance of open-source integrative genomics to drug discovery
    Chesler, Elissa J.
    Baker, Erich J.
    CURRENT OPINION IN DRUG DISCOVERY & DEVELOPMENT, 2010, 13 (03) : 310 - 316
  • [8] Predicting protein targets for drug-like compounds using transcriptomics
    Pabon, Nicolas A.
    Xia, Yan
    Estabrooks, Samuel K.
    Ye, Zhaofeng
    Herbrand, Amanda K.
    Suss, Evelyn
    Biondi, Ricardo M.
    Assimon, Victoria A.
    Gestwicki, Jason E.
    Brodsky, Jeffrey L.
    Camacho, Carlos J.
    Bar-Joseph, Ziv
    PLOS COMPUTATIONAL BIOLOGY, 2018, 14 (12)
  • [9] Mappability of drug-like space: towards a polypharmacologically competent map of drug-relevant compounds
    Sidorov, Pavel
    Gaspar, Helena
    Marcou, Gilles
    Varnek, Alexandre
    Horvath, Dragos
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2015, 29 (12) : 1087 - 1108
  • [10] How "drug-like" are naturally occurring anti-cancer compounds?
    Ntie-Kang, Fidele
    Lifongo, Lydia L.
    Judson, Philip N.
    Sippl, Wolfgang
    Efange, Simon M. N.
    JOURNAL OF MOLECULAR MODELING, 2014, 20 (01)